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This tutorial reviews image alignment and image stitchifggpathms. Image align-

ment (registration) algorithms can discover the largdes@parametric) correspon-
dence relationships among images with varying degreeserfagy. They are ideally
suited for applications such as video stabilization, sunmation, and the creation
of large-scale panoramic photographs. Image stitchingrithgns take the alignment
estimates produced by such registration algorithms amitiiiee images in a seam-
less manner, taking care to deal with potential problemb siscblurring or ghosting

caused by parallax and scene movement as well as varyingimapsures. This tu-
torial reviews the basic motion models underlying aligntreerd stitching algorithms,

describes effective direct (pixel-based) and featuretbadignment algorithms, and
describes blending algorithms used to produce seamlessicso closes with a dis-
cussion of open research problems in the area.
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1 Introduction

Algorithms for aligning images and stitching them into séssa photo-mosaics are among the
oldest and most widely used in computer vision. Frame-rai@ge alignment is used in every
camcorder that has an “image stabilization” feature. Imstgehing algorithms create the high-
resolution photo-mosaics used to produce today’s digit@bsnand satellite photos. They also
come “out of the box” with every digital camera currently tgisold, and can be used to create
beautiful ultra wide-angle panoramas.

An early example of an image registration algorithm (thatilswidely used) is the patch-based
translational alignment (optical flow) technique develbpg Lucas and Kanade (1981). Variants
of this algorithm are used in almost all motion-compensatddo compression schemes such as
MPEG and H.263 (Le Gall 1991). The translational motion mwodss later generalized to an affine
motion by Rehg and Witkin (1991), Fuh and Maragos (1991), Badenet al. (1992), among
others. These parametric motion estimation algorithme h@wnd a wide variety of applications,
including video summarization (Bergehal. 1992, Teodosio and Bender 1993, Kuratal. 1995,
Irani and Anandan 1998), video stabilization (Hansé@l. 1994), and video compression (Irani
etal. 1995, Leeet al. 1997).

In the photogrammetry community, more manually intensie¢hads based on surveygeund
control pointsor manually registeretlie pointshave long been used to register aerial photos into
large-scale photo-mosaics (Slama 1980). One of the keynadsgan this community was the de-
velopment ofbundle adjustmerdlgorithms that could simultaneously solve for the logasiof
all of the camera positions, thus yielding globally corestsolutions (Trigget al. 1999). One
of the recurring problems in creating photo-mosaics is timeiation of visible seams, for which
a variety of techniques have been developed over the yealgréish 1975, Milgram 1977, Peleg
1981, Davis 1998, Agarwalet al.2004)

In film photography, special cameras were developed at timediuthe century to take ultra
wide angle panoramas, often by exposing the film through ticeéslit as the camera rotated on
its axis (Meehan 1990). Inthe mid-1990s, image alignmeirigues started being applied to the
construction of wide-angle seamless panoramas from nelgafad-held cameras (Mann and Picard
1994, Szeliski 1994, Chen 1995, Szeliski 1996). More rewgmk in this area has addressed the
need to compute globally consistent alignments (Szeliski @hum 1997, Sawhney and Kumar
1999, Shum and Szeliski 2000), the removal of “ghosts” dupai@llax and object movement
(Davis 1998, Shum and Szeliski 2000, Uyttendatlal. 2001, Agarwalaet al.2004), and dealing
with varying exposures (Mann and Picard 1994, Uyttendeiedé 2001, Agarwalat al.2004). (A
collection of some of these papers can be found in (BenosméKang 2001).) These techniques
have spawned a large number of commercial stitching pred@ten 1995, Sawhn&y al. 1998),



for which reviews and comparison can be found on the Web.

While most of the above techniques work by directly minimgpixel-to-pixel dissimilarities,
a different class of algorithms works by extracting a spaeteffeaturesand then matching these
to each other (Zoghlanat al. 1997, Capel and Zisserman 1998, Cham and Cipolla 1998, Badra
et al. 1998, McLauchlan and Jaenicke 2002, Brown and Lowe 2003tuFe-based approaches
have the advantage of being more robust against scene moteanel are potentially faster, if
implemented the right way. Their biggest advantage, howeyvéhe ability to “recognize panora-
mas”, i.e., to automatically discover the adjacency (@amrtelationships among an unordered set
of images, which makes them ideally suited for fully automdastitching of panoramas taken by
casual users (Brown and Lowe 2003).

What, then, are the essential problems in image alignmeshtsaitching? For image align-
ment, we must first determine the appropriate mathematiocaeirelating pixel coordinates in
one image to pixel coordinates in another. Section 2 revibese basicnotion modelsNext, we
must somehow estimate the correct alignments relatingwanpairs (or collections) of images.
Section 3 discusses haslrect pixel-to-pixel comparisons combined with gradient des¢and
other optimization techniques) can be used to estimate thesmmeters. Section 4 discusses how
distinctivefeaturescan be found in each image and then efficiently matched tallsapstablish
correspondences between pairs of images. When multiplgasexist in a panorama, techniques
must be developed to compute a globally consistent set ghralents and to efficiently discover
which images overlap one another. These issues are disidasSection 5.

For image stitching, we must first choose a final compositumgse (and its parameteriza-
tion) onto which to warp and place all of the aligned imagesc{®n 6). We also need to develop
algorithms to seamlessly blend overlapping images, evéneipresence of parallax, lens distor-
tion, scene motion, and exposure differences. In the lasioseof this survey, | discuss additional
applications of image stitching and open research problems

2 Motion models

Before we can register and align images, we need to estahbsmathematical relationships that
map pixel coordinates from one image to another. A varietgumhparametric motion models
are possible, from simple 2D transforms, to planar perggentodels, 3D camera rotations, lens
distortions, and the mapping to non-planar (e.g., cylraljisurfaces (Szeliski 1996).

To facilitate working with images at different resolutiomge adopt a variant of theormalized
device coordinatesised in computer graphics (Watt 1995, OpenGL ARB 1997). Fypaal
(rectangular) image or video frame, we let the pixel coaaths range from—1, 1] along the

http://www.panoguide.com/software



longer axis, and—a, a] along the shorter, whereis the inverse of thaspect ratic? For an image
with width W and heightH, the equations mapping integer pixel coordinates= (x;,y;) to
normalized device coordinates= (x,y) are

2?51 - W

T=—o— and y=

Note that if we work with images injpyramid we need to halve th& value after each decimation
step rather than recomputing it fromax(W, H), since the(1W, H) values may get rounded or
truncated in an unpredictable manner.

2y, —

where S = max(W, H). (1)

2.1 2D (planar) motions

Having defined our coordinate system, we can now describechovdinates are transformed. The
simplest transformations occur in the 2D plane and aretilitesd in Figure 1.

Translation. 2D translations can be written &= x + t or
=1 t|a ()

whereI is the @ x 2) identity matrix andx = (x,y, 1) is the homogeneousr projective2D
coordinate.

Rotation + translation. This transformation is also known @® rigid body motionor the2D
Euclidean transformatiorfsince Euclidean distances are preserved). It can be wtse:’ =
Rx +tor

=R t|x (3)
where
cosf) —sind
R= 4
[ sinf cosd } ()

is an orthonormal rotation matrix witRR” = I and|R| = 1.

2In computer graphics, it is usual to have both axes range frem1], but this requires the use of two different
focal lengths for the vertical and horizontal dimensiormg] anakes it more awkward to handle mixed portrait and
landscape mode images.
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Figure 1: Basic set of 2D planar transformations

Scaled rotation. Also known as thesimilarity transform this transform can be expressed as
x’ = sRx + t wheres is an arbitrary scale factor. It can also be written as

z' = | sR t}zfc:[‘; _ab i]w (5)

where we no longer require that + b2 = 1. The similarity transform preserves angles between
lines.

Affine. The affine transform is written as = A&, whereA is an arbitrary2 x 3 matrix, i.e.,

z — [ Qoo  Ap1  Ao2 ] i (6)

aip aixz 12

Parallel lines remain parallel under affine transformagion

Projective. This transform, also known aspeerspective transforrar homographyoperates on
homogeneous coordinates,
& ~ Hi, (7)

where~ denotes equality up to scale aifi is an arbitrary3 x 3 matrix. Note thatH is itself
homogeneous, i.e., it is only defined up to a scale. The ieglibmogeneous coordinaié must
be normalized in order to obtain an inhomogeneous rasyite.,

, hoo + hory + hoo

= , hio + hiy + hao
hao + ho1y + hao

and = )
hoox + ho1y + hoo

(8)

Perspective transformations preserve straight lines.



| Name | Matrix | #D.O.F.| Preserves: | Icon |

translation I)t],, 2 | orientation+--- | [
rigid (Euclidean)| [ R [t ] . 3 |lengthst - Q
similarity [sR|t] | 4 |angles+. - S
affine (Al 6 | paralielismy--- | [/
projective | H }“ 8 straight lines G

Table 1: Hierarchy of 2D coordinate transformations. TRe< 3 matrices are extended with a thif@” 1]
row to form a full3 x 3 matrix for homogeneous coordinate transformations.

Hierarchy of 2D transformations The preceding set of transformations are illustrated in Fig
ure 1 and summarized in Table 1. The easiest way to think cfetie as a set of (potentially
restricted)3 x 3 matrices operating on 2D homogeneous coordinate vect@aglel and Zisser-
man (2004) contains a more detailed description of the fakyaof 2D planar transformations.

The above transformations form a nested sejrotips i.e., they are closed under composition
and have an inverse that is a member of the same group. Eaugbl€s) group is a subset of the
more complex group below it.

2.2 3D transformations

A similar nested hierarchy exists for 3D coordinate transftions that can be denoted using
4 x 4 transformation matrices, with 3D equivalents to translatirigid body (Euclidean) and
affine transformations, and homographies (sometimesatitineations) (Hartley and Zisserman
2004).
The process ofentral projectionmaps 3D coordinates = (z,y, z) to 2D coordinates’ =
(', ', 1) through apinholeat the camera origin onto a 2D projection plane a distghal®ng the
z axis,
P =12y =fL 9)
z z
as shown in Figure 2. The relationship between the (un#}lexal lengthf and the field of view
0 is given by

1= tang or §=2tan"! l (20)

To convert the focal lengtlf to its more commonly used 35mm equivalent, multiply the @&ov
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Figure 2: Central projection, showing the relationship between tBead 2D coordinatesc and =/, as
well as the relationship between the focal length” and the field of view.

number by 17.5 (the half-width of a 35mm photo negative franf® convert it to pixel coordi-
nates, multiply it byS/2 (half-width for a landscape photo).
Perspective projection can also be denoted usihg al projection matrix P,

f0 0 0
0 0 0
7'~ / & = Pz, (11)
00 1 0
0 0 —20 <1

wherez’ = (2,3, 1,2') andz = (z,y, z, 1) are now homogeneous 4-vectors. The usuainsic
calibration matrix K is the upper3 x 3 portion of the projection matrix?. This matrix can
be replaced by a more general upper-triangular makrithat can account for non-square pixels,
skew, and a variable optic center location (Hartley andefissin 2004). However, in practice, the
simple focal length scaling used above provides high-guedisults when stitching images from
regular cameras.

The last row of P denotes the transformation from 3D coordinateg-tauffervaluesz’, with
20 = Znear/(2far — Znear) @NA 21 = ZnearZfar/(Zfar — Znear), Which maps the rangBucar, 2far| t0
[1,0]. These are not usually visible to a photographic cameraatautiseful for reasoning about
the mappings between images of a 3D scene, as described below

What happens when we take two images of a 3D scene from diffeagnera positions and/or
orientations? A 3D poinp gets mapped to an image coordinafethrough the combination of a
3D rigid-body (Euclidean) motioiy,

— = E 12
x { of 1 |P=Eop (12)
and a perspective projectidf,

&y ~ PyEp. (13)
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Assuming that we know the z-buffer valug for a pixel in one image, we can map it back to the
3D coordinatep using
p~ E;'P;'%, (14)

and then project it into another image yielding
ZI~31 ~ PlElp = P1E1E0_1PO_1(I~30 = M01(I~30. (15)

Unfortunately, we do not usually have access to the depthdauates of pixels in a regular
photographic image. However, forpdanar scengwe can replace the last row &1, in (11) with
a generaplane equationn, - p + d, that maps points on the plane 49 = 0 values. Then, if we
setz, = 0, we can ignore the last column 8f[; in (15) and also its last row, since we do not care
about the final z-buffer depth. The mapping equation (159 teduces to

&, ~ Hy 2o, (16)

where H, is a generaB x 3 homography matrix and;, andz, are now 2D homogeneous co-
ordinates (i.e., 3-vectors) (Szeliski 1994, Szeliski )99®his justifies the use of the 8-parameter
homography as a general alignment model for mosaics of pkosnes (Mann and Picard 1994,
Szeliski 1996
The more interesting case is when the camera undergoesqgiat®n (which is equivalent to

assuming all points are very far from the camera). Setting ¢, = 0, we get the simplified x 3
homography

H=K RR,'K (17)

whereK,, = diad( fx, fx, 1) is the simplified camera intrinsic matrix (Szeliski 1996hig can also
be re-written as

T Zo
Yy | ™~ Ry, Yo |» (18)
1 Jo

which shows the true simplicity of the mapping equations rmia¢tes all of the motion parameters
explicit. Thus, instead of the general 8-parameter honpigraelating a pair of images, we get
the 3-, 4-, or 5-paramet@D rotation motion models corresponding to the cases where the focal
length f is known, fixed, or variable (Szeliski and Shum 1997). Estinggthe 3D rotation matrix

3For points off the reference plane, we get out-of-plpagallax motion, which is why this representation is often
called theplane plus parallaxepresentation (Sawhney 1994, Szeliski and Coughlan ¥a8#aret al. 1994a).

“Note that for a single pair of images, the fact that a 3D plari@eing viewed by a set of rigid cameras does not
reduce the total number of degrees of freedom. However, farge collection of images taken of a planar surface
(e.g., a whiteboard) from a calibrated camera, we couldaethe number of degrees of freedom per image from 8 to
6 by assuming that the plane is at a canonical location (&4.]).
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(and optionally, focal length) associated with each imagmtrinsically much more stable than
estimating a full 8-d.o.f. homography, which makes this thethod of choice for large-scale
consumer-level image stitching algorithms (Szeliski atdir8 1997, Shum and Szeliski 2000,
Brown and Lowe 2003).

2.3 Cylindrical and spherical coordinates

An alternative to using homographies or 3D motions to aligages is to first warp the images
into cylindrical coordinates and to then use a pure translational modelgo #dem (Chen 1995).
Unfortunately, This only works if the images are all takethaa level camera or with a known tilt
angle.

Assume for now that the camera is in its canonical positian, its rotation matrix is the
identity so that the optic axis is aligned with thexis and they axis is aligned vertically. The 3D
ray corresponding to afx, y) pixel is thereforgz, y, f).

We wish to project this image ontocglindrical surfaceof unit radius (Szeliski 1994). Points
on this surface are parameterized by an afigied a height, with the 3D cylindrical coordinates
corresponding tod, h) given by

(sin@, h,cosf) x (z,y, f). (19)

From this correspondence, we can compute the formula fowtrpedor mappedcoordinates
(Szeliski and Shum 1997),

¥ = s =stan"! ;, (20)
y, = sh= Sﬁ, (21)

wheres is an arbitrary scaling factor (sometimes called h@ius of the cylinder) that can be set
to s = f to minimize the distortion (scaling) near the center of timage> The inverse of this
mapping equation is given by

/

r = ftan@zftani, (22)
s

/ / /
y = h\/x2+f2:%f\/l—l-tanzx’/s:f%sec%. (23)

Images can also be projected ontspherical surfac€Szeliski and Shum 1997), which is use-
ful if the final panorama includes a full sphere or hemisploérgews, instead of just a cylindrical

5The scale can also be set to a larger or smaller value for tabdanmpositing surface, depending on the desired
output panorama resolution—sg&



strip. In this case, the sphere is parameterized by two aggle), with 3D spherical coordinates
given by
(sin 6 cos ¢, sin ¢, cos 0 cos @) x (x,y, f). (24)

The correspondence between coordinates is now given biigl8z:nd Shum 1997)

¥ = s =stan! ;, (25)
y = s¢=stan"! ﬁ, (26)
with the inverse given by
:L./
r = ftan@zftan;, (27)

y/ y/ x/
= /22 + f2tan¢ = tan — f1/1 + tan®2’/s = f tan = sec —. 28
Y x? + f2tan ¢ ansf + tan® 2’/ faunssecS (28)

Note that it may be simpler to simply generate a scéled, z) direction from (19) followed by a
perspective division by and a scaling by .

Cylindrical image stitching algorithms are most commorggd when the camera is known to
be level and only rotating around its vertical axis (Chen3)99Jnder these conditions, images
at different rotations are related by a pure horizontaldi@ion® This makes it attractive as an
initial class project in an introductory computer visiorucse, since the full complexity of the
perspective alignment algorithr§3.5 & §4.3) can be avoided.

Professional panoramic photographers sometimes alsopee it head that makes it easy to
control the tilt and to stop at specifi@tentsn the rotation anglé.This not only ensures a uniform
coverage of the visual field with a desired amount of imagelape but also makes it possible
to stitch the images using cylindrical or spherical cooatiés and pure translations. In this case,
pixel coordinatesz, y, f) must first be rotated using the known tilt and panning angkferb
being projected into cylindrical or spherical coordinag€en 1995). Having a roughly known
panning angle also makes it easier to compute the alignmeieice the rough relative positioning
of all the input images is known ahead of time, enabling acedwsearch range for alignment.

One final coordinate mapping worth mentioning is plodar mapping where the north pole lies
along the optic axis rather than the vertical axis,

(cos @ sin ¢, sinfsin ¢, cos @) = s (x,y, 2). (29)

6Small vertical tilts can sometimes be compensated for witbrtical translation.
Ilwww.cs.washington.edu/homes/seitz/course/590 S
8See, e.g., //www.kaidan.com.



In this case, the mapping equations become

¥ = spcosl = s tan~! C, (30)
T z

y = s¢sinf = sY tan~1 f, (31)
T z

wherer = /x? + y? is theradial distancein the (z, y) plane ands¢ plays a similar role in the

(', y') plane. This mapping provides an attractive visualizatiofiexe for certain kinds of wide-

angle panoramas and is also a good model for the distortiluted byfisheyes lenseas discussed

below. Note how for small values ¢f, y), the mapping equations reducesitox sx/z, which

suggests that plays a role similar to the focal length

2.4 Lens distortions

When images are taken with wide-angle lenses, it is ofteressary to modelens distortions
such agadial distortion The radial distortion model says that coordinates in treeoled images
are displaced awaybérrel distortion) or towardsgincushiondistortion) the image center by an
amount proportional to their radial distance. The simplagdtal distortion models use low-order
polynomials, e.g.,

P = $(1+/€1T2—|—K27"4)

Yy = y(1+ kr? + kor?), (32)

wherer? = 2% +y? andk, andx, are called theadial distortion parameter¢Brown 1971, Slama
1980)? More complex distortion models also inclutingential (decentering) distortior{fSlama
1980), but these are usually not necessary for consumelrdgtching.

A variety of techniques can be used to estimate the radi&brtiisn parameters for a given
lens. One of the simplest and most useful is to take an imageoéne with a lot of straight lines,
especially lines aligned with and near the edges of the imB&lge radial distortion parameters can
then be adjusted until all of the lines in the image are diaighich is commonly called thelumb
line methodBrown 1971, Kang 2001, EI-Melegy and Farag 2003).

Another approach is to use several overlapping images atwhtbine the estimation of the ra-
dial distortion parameters together with the image aligninpeocess. Sawhney and Kumar (1999)
use a hierarchy of motion models (translation, affine, mtoje) in a coarse-to-fine strategy cou-
pled with a quadratic radial distortion correction term. eytuse direct (intensity-based) mini-
mization to compute the alignment. Stein (1997) uses alfediased approach combined with

9Sometimes the relationship betweeandz’ is expressed the other way around, i.e., using primed (fooai)di-
nates on the right-hand side.
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a general 3D motion model (and quadratic radial distortiamyich requires more matches than a
parallax-free rotational panorama but is potentially ngeaeral.

Fisheye lenses require a different model than traditioo®frmmmial models of radial distor-
tion. Instead, fisheye lenses behave, to a first approximadsequi-distancerojectors of angles
away from the optic axis (Xiong and Turkowski 1997), whiclthe same as thgolar projection
described by equations (29-31). Xiong and Turkowski (199cribe how this model can be
extended with the addition of an extra quadratic corredtiap, and how the unknown parameters
(center of projection, scaling factaet etc.) can be estimated from a set of overlapping fisheye
images using a direct (intensity-based) non-linear mizaton algorithm.

3 Direct (pixel-based) alignment

Once we have chosen a suitable motion model to describeigmradnt between a pair of images,
we need to devise some method to estimate its parametersafgpneach is to shift or warp the
images relative to each other and to look at how much the piagitee. Approaches that use
pixel-to-pixel matching are often calledtirect methodsas opposed to thieature-based methods
described in the next section.

To use a direct method, a suitaldaor metric must first be chosen to compare the images.
Once this has been established, a suitabkrchtechnique must be devised. The simplest tech-
nigue is to exhaustively try all possible alignments, ite.do afull search In practice, this may
be too slow, sdierarchical coarse-to-fine techniques based on image pyramids havedegeh
oped. Alternatively, Fourier transforms can be used todjpgethe computation. To get sub-pixel
precision in the alignmenincrementaimethods based on a Taylor series expansion of the image
function are often used. These can also be appligghtametric motion modelsEach of these
techniques is described in more detail below.

3.1 Error metrics

The simplest way to establish an alignment between two is\&y® shift one image relative to
the other. Given @aemplateimage/,(x) sampled at discrete pixel locatiofs; = (z;,v;)}, we
wish to find where it is located in imagl(x). A least-squares solution to this problem is to find
the minimum of thesum of squared differenc€SSD) function

ESSD('U') = Z[]l(:cl + 'I.L) — ]0(33@)]2 = Ze?, (33)

7 %
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whereu = (u,v) is thedisplacemenande; = I, (x; + u) — Iy(x;) is called theresidual error
(or thedisplaced frame differenda the video coding literaturéf. (We ignore for the moment the
possibility that parts of, may lie outside the boundaries for be otherwise not visible.)

In general, the displacemeatcan be fractional, so a suitable interpolation function ines
applied to imagd; (x). In practice, a bilinear interpolant is often used, but lbic interpolation
may yield slightly better results. Color images can be pgsed by summing differences across all
three color channels, although it is also possible to fiesstdsform the images into a different color
space or to only use the luminance (which is often done inovefecoders).

Robust error metrics We can make the above error metric more robust to outliergphacing
the squared error terms with a robust functign;) (Huber 1981, Hampedt al. 1986, Black and
Anandan 1996, Stewart 1999) to obtain

Esrp(u ZP (Ii(z; +u) — Io(x;)) ZP ei)- (34)

The robust nornp(e) is a function that grows less quickly than the quadratic figreessociated
with least squares. One such function, sometimes used ilomestimation for video coding
because of its speed, is ttkem of absolute differencéSAD) metric, i.e.,

ESAD Zul azl—i—u ]0((13@)| :Z|€Z‘ (35)

However, since this function is not differentiable at thegior, it is not well suited to gradient-
descent approaches such as the ones preseriddtin

Instead, a smoothly varying function that is quadratic foa$l values but grows more slowly
away from the origin is often used. Black and Rangarajan§l8&cuss a variety of such func-
tions, including theGeman-McClurdunction,

33'2

14 22/a?’ (36)

pem(T) =
whereaq is a constant that can be thought of asoarlier threshold An appropriate value for the
threshold can itself the derived using robust statistiagogt 1981, Hampaedt al. 1986, Rousseeuw
and Leroy 1987), e.g., by computing theedian of absolute difference®/ AD = med]e;|, and
multiplying by 1.4 to obtain a robust estimate of the stadddaviation of the non-outlier noise
process.

10The usual justification for using least squares is that hésdptimal estimate with respect to Gaussian noise. See
the discussion below on robust alternatives.
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Spatially varying weights. The error metrics above ignore that fact that for a givennaignt,
some of the pixels being compared may lie outside the origmnage boundaries. Furthermore,
we may want to partially or completely downweight the cdmitions of certain pixels. For ex-
ample, we may want to selectively “erase” some parts of ag@feom consideration, e.g., when
stitching a mosaic where unwanted foreground objects haga but out. For applications such as
background stabilization, we may want to downweight thedig@gart of the image, which often
contains independently moving objects being tracked by #meera.

All of these tasks can be accomplished by associating aatlyatiarying per-pixelweight
value with each of the two images being matched. The erroricrteen become theveighted(or
windowed) SSD function,

EWSSD('U') = Zwo(m)wl (CBZ + u)[[l(wl + ’U,) — ]0(1,'@')]2, (37)

where the weighting functions, andw, are zero outside the valid ranges of the images.

If a large range of potential motions is allowed, the aboveérime&an have a bias towards
smaller overlap solutions. To counteract this bias, thedaived SSD score can be divided by the
overlap area

A= wolx)wi(x; + u) = (38)

to compute ger-pixel(or mean) squared pixel error. This square root of this qtyaistthe root

mean squarechtensity error
RMS = \/Ewssp/A (39)

often seen reported in comparative studies.

Bias and gain (exposure differences). Often, the two images being aligned were not taken with
the same exposure. A simple model of linear intensity viamndtetween the two images is thas
and gainmodel,

L(x+u)=(14a)ly(x)+ 5, (40)

whereg is thebiasanda is thegain (Lucas and Kanade 1981, Gennert 1988, Fuh and Maragos
1991, Bakeet al.2003b). The least squares formulation then becomes

Epc(u) =) [L(m +u) — (L+ a)o(z;) — 8] = [alo(x;) + 5 — e (41)

K3 3

Rather than taking a simple squared difference betweeegmonding patches, it becomes neces-
sary to perform dinear regressionwhich is somewhat more costly. Note that for color images,
it may be necessary to estimate a different bias and gairefdr eolor channel to compensate for
the automaticolor correctionperformed by some digital cameras.
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A more general (spatially-varying non-parametric) modehtensity variation, which is com-
puted as part of the registration process, is presentedarafd Tang 2003). This can be useful
for dealing with local variations such as th@gnettingcaused by wide-angle lenses. It is also
possible to pre-process the images before comparing thkies, e.g., by using band-pass filtered
images (Burt and Adelson 1983, Bergeinal. 1992) or using other local transformations such as
histograms or rank transforms (Cekal. 1995, Zabih and Woodfill 1994).

Correlation. An alternative to taking intensity differences is to penfiarorrelation i.e., to max-
imize theproduct(or cross-correlation of the two aligned images,

Ecc(u) = Z Io(@:) 11 (; + w). (42)

At first glance, this may appear to make bias and gain modalmngcessary, since the images will
prefer to line up regardless of their relative scales ansketdéf However, this is actually not true. If
a very bright patch exists if (), the maximum product may actually lie in that area.

For this reasomormalized cross-correlatioils more commonly used,

>illo(x:) — Io] [L(zi +w) — 1]

Feelw) = T — (43)
co(u) \/Zi[fo(wi) — Io)?[1i(x; + u) — [1]?
where
fo = %ZIO(“’Z‘) (44)
R DIICERY (45)

are themean imagesf the corresponding patches aids the number of pixels in the patch. The
normalized cross-correlation score is always guarantebd tn the rangé-1, 1], which makes it
easier to handle in some higher-level applications (sudttea&ling which patches truly match).
Note, however, that the NCC score is undefined if either ofwltepatches has zero variance (and
in fact, its performance degrades for noisy low-contragiomes).

3.2 Hierarchical motion estimation

Now that we have defined an alignment cost function to opgmiww do we find its minimum?
The simplest solution is to dofall searchover some range of shifts, using either integer or sub-
pixel steps. This is often the approach usedbitwck matchingn motion compensated video
compressionwhere a range of possible motions (say6 pixels) is explored:?

11n stereo matching, an explicit search over all possiblpatisies (i.e., @lane sweepis almost always performed,
since the number of search hypotheses is much smaller doe idx nature of the potential displacements (Scharstein
and Szeliski 2002).
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To accelerate this search procdssyarchical motion estimatiois often used, where an image
pyramid is first constructed, and a search over a smaller euofldiscrete pixels (corresponding
to the same range of motion) is first performed at coarseldé@uam 1984, Anandan 1989). The
motion estimate from one level of the pyramid can then be tsédtialize a smalletocal search
at the next finer level. While this is not guaranteed to predilne same result as full search, it
usually works almost as well and is much faster.

More formally, let

I (x;) — 117V (2x)) (46)

be thedecimatedimage at level obtained by subsamplingl@wnsamplinya smoothed (pre-
filtered) version of the image at leviel 1. Atthe coarsest level, we search for the best displacement
uY that minimizes the difference between imag’éé and I{”. This is usually done using a full
search over some range of displacemertsc 27/[—S, S]? (whereS is the desiregearch range
at the finest (original) resolution level), optionally f@ied by the incremental refinement step
described ir§3.4.

Once a suitable motion vector has been estimated, it is og@edicta likely displacement

al=) 9y (47)

for the next finer levet? The search over displacements is then repeated at the firedroleer

a much narrower range of displacements, ady" + 1, again optionally combined with an in-
cremental refinement step (Anandan 1989). A nice descnigtidhe whole process, extended to
parametric motion estimatio§3.5), can be found in (Bergest al. 1992).

3.3 Fourier-based alignment

When the search range corresponds to a significant fractitiredarger image (as is the case in
image stitching), the hierarchical approach may not woék tell, since it is often not possible
to coarsen the representation too much before significaturfes get blurred away. In this case, a
Fourier-based approach may be preferable.

Fourier-based alignment relies on the fact that the Fotna@sform of a shifted signal has the
same magnitude as the original signal but linearly varyingse, i.e.,

FiL(@+w)} = F{Li(x)} e = 1, (f)e 2] (48)

12This doubling of displacements is only necessary if disptaents are defined in integeixel coordinates, which
is the usual case in the literature, e.g., (Bergeal. 1992). Ifnormalized device coordinaté$?) are used instead, the
displacements (and search ranges) need not change frolntoléaeel, although the step sizes will need to be adjusted
(to keep search steps of roughly one pixel).
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where f is the vector-valued frequency of the Fourier transformardise calligraphic notation
Z,(f) = F{L(x)} to denote the Fourier transform of a signal (Oppenhetial. 1999, p. 57).

Another useful property of Fourier transforms is that cdation in the spatial domain corre-
sponds to multiplication in the Fourier domain (Oppenhetral. 1999, p. 58)-3 Thus, the Fourier
transform of the cross-correlation functiéikc can be written as

F (Feclw)) = 7 { - hi@)i(e: +w) | = F (blwh(w} =TT, (9

where

hu) = fu)Fg(w) = Y f@)g(w: +u) (50)

is the correlation function, i.e., the convolution of one signal with the reseeiof the other, and
Z7(f) is thecomplex conjugatef Z; ( f). (This is because convolution is defined as the summation
of one signal with the reverse of the other (Oppenheiral. 1999).)

Thus, to efficiently evaluat&- over the range of all possible valueswfwe take the Fourier
transforms of both imagek (x) and; (x), multiply both transforms together (after conjugating
the second one), and take the inverse transform of the r@hétFast Fourier Transform algorithm
can compute the transform of & x A image in QN M log N M) operations (Oppenheist al.
1999). This can be significantly faster than the\®M?) operations required to do a full search
when the full range of image overlaps is considered.

While Fourier-based convolution is often used to accedeta computation of image correla-
tions, it can also be used to accelerate the sum of squaffedetites function (and its variants) as
well. Consider the SSD formula given in (33). Its Fourienstorm can be written as

F (Bun(w)) = # { Sl + ) ~ hfe)? | =5(0) Slib(en) + )] - 2l F)T: ().
’ (51)
Thus, the SSD function can be computed by taking twice theetadron function and subtracting
it from the sum of the energies in the two images.

7

Windowed correlation. Unfortunately, the Fourier convolution theorem only applivhen the
summation overe; is performed overll the pixels in both images, using a circular shift of the
image when accessing pixels outside the original bounslaki¢hile this is acceptable for small
shifts and comparably sized images, it makes no sense waeméges overlap by a small amount
or one image is a small subset of the other.

13In fact, the Fourier shift property (48) derives from the eolntion theorem by observing that shifting is equivalent
to convolution with a displaced delta functiote — u).
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In that case, the cross-correlation function should beagal with awindowed(weighted)
cross-correlation function,

Ewcc(u) = Z wo(x;)Io(x;) wi(x; + w)li(x; + u), (52)

= [wo(@) 1§ () [¥[wi (2) I (2)] (53)

where the weighting functions, andw, are zero outside the valid ranges of the images, and both
images are padded so that circular shifts return 0 valuessdmuthe original image boundaries.
A more interesting case is the computation ofweaghtedSSD function introduced in (37),

Ewssp(u) = 3 wo(x)wy (@ + u)[l1(a; +u) — Io(z:))” (54)
= wo(@)*[wi () I} ()] + [wo(@) [5 (z)[Fw: () — 2[wo () Io(z)[F[wi (z) 1 (2)].

The Fourier transform of the resulting expression is thoeef

F{Bwssp(w)} = Wo(£)S1(£) + So(F )W (F) — 2Lo(H)T(F), (55)
where

Wo = Fluo()}, Wi = Flui(@)),

Ty = Flwo(x)lo(x)}, 7, = Flwi(zx)(x)}, (56)

S() = ]—"{wo(m)lg(m)}, and S = }"{wl(m)lf(m)}

are the Fourier transforms of the weighting functions amditbightedsquared and original image
signals. Thus, for the cost of a few additional image mukgphnd Fourier transforms, the correct
windowed SSD function can be computed.

The same kind of derivation can be applied to the bias-ganmected sum of squared difference
function Ezg. Again, Fourier transforms can be used to efficiently coralitof the correlations
needed to perform the linear regression in the bias and gaenpeters in order to estimate the
exposure-compensated difference for each potential shift

Phase correlation. A variant of regular correlation (49) that is sometimes ulsgdnotion esti-
mation isphase correlatior{fKuglin and Hines 1975, Brown 1992). Here, the spectrum eftifo
signals being matched hitenedby dividing each per-frequency product in (49) by the magni-
tudes of the Fourier transforms
To(£)Z; (£)
F{Epc(u)} =

’ [EAGIIEAS

before taking the final inverse Fourier transform. In theecatnoiseless signals with perfect
(cyclic) shift, we have, (x + v) = Iy(x), and hence from (48) we obtain

Fih(x+u)} = T(f)e S =1,(f) and
F{Bpo(u)} = e2mwf (58)

(57)
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The output of phase correlation (under ideal conditionshésefore a single spike (impulse) lo-
cated at the correct value af which (in principle) makes it easier to find the correctrestie.

Phase correlation has a reputation in some quarters of bortpeng regular correlation, but
this behavior depends on the characteristics of the sigmalsnoise. If the original images are
contaminated by a noise signal in a narrow frequency bad, (ew-frequency noise or peaked
frequency “hum”), the whitening process effectively depdrasizes the noise in these regions.
However, if the original signals have very low signal-tas®ratio at some frequencies (say, two
blurry or low-textured images with lots of high-frequenayise), the whitening process can actu-
ally decrease performance. To my knowledge, no systematigparison of the two approaches
(together with other Fourier-based techniques such asomiad and/or bias-gain corrected differ-
encing) has been performed, so this is an interesting ardartber exploration.

Rotations and scale. While Fourier-based alignment is mostly used to estimatesiational
shifts between images, it can, under certain limited comast also be used to estimate in-plane
rotations and scales. Consider two images that are rebatedy by rotation, i.e.,

L(Rx) = Iy(x). (59)

If we re-sample the images infmlar coordinates

Io(r,0) = Iy(rcosf,rsin®) and I,(r,0) = I (rcosf,rsiné), (60)

we obtain
L(r,0+0) = Iy(r,0). (61)

The desired rotation can then be estimated using an FFFssid technique.
If the two images are also related by a scale,

I1(¢ Ra) = I(=), (62)
we can re-sample int@g-polar coordinates
Io(s,0) = Iy(e® cos O, e*sinf) and I,(s,0) = I,(e* cos b, e* sin b)), (63)

to obtain
Li(s+5,0+0)=Is,0). (64)

In this case, care must be taken to choose a suitable rangeaties that reasonably samples the
original image.
For images that are also translated by a small amount,

L(efRx +t) = Iy(x), (65)
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De Castro and Morandi (1987) proposed an ingenious soltiianuses several steps to estimate
the unknown parameters. First, both images are convertduetéourier domain, and only the
magnitudes of the transformed images are retained. Inipt@dhe Fourier magnitude images
are insensitive to translations in the image plane (althdhg usual caveats about border effects
apply). Next, the two magnitude images are aligned in rotaéind scale using the polar or log-
polar representations. Once rotation and scale are estimane of the images can be de-rotated
and scaled, and a regular translational algorithm can bkeatp estimate the translational shift.

Unfortunately, this trick only applies when the images hiarge overlap (small translational
motion). For more general motion of patches or images, thenpetric motion estimator described
in §3.5 or the feature-based approaches describéd need to be used.

3.4 Incremental refinement

The techniques described up till now can estimate trawsiatialignment to the nearest pixel (or
potentially fractional pixel if smaller search steps ared)s In general, image stabilization and
stitching applications require much higher accuraciedbtaia acceptable results.

To obtain bettessub-pixelestimates, we can use one of several techniques (Tian andsHuh
1986). One possibility is to evaluate several discretedet or fractional) values d@f:, v) around
the best value found so far, anditaerpolatethe matching score to find an analytic minimum.

A more commonly used approach, first proposed by Lucas andd&af1981), is to dgradient
descenbn the SSD energy function (33), using a Taylor Series expamd the image function,

Bk ssp(u+Au) = Y [L(xi +u+ Au) — Ip(z;)]?

(2

~ Y [N+ ) + T (@i + u)Au — Lo(@))? (66)
where
ol, oI,

is theimage gradienat z; + u.*
The above least squares problem can be minimizing by sothimgssociatedormal equations
(Golub and Van Loan 1996),
AAu=1b> (69)

4we follow the convention, commonly used in robotics and iak& and Matthews 2004), that derivatives with
respect to (column) vectors result in row vectors, so thaefdransposes are needed in the formulas.
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where
A= ZJlT(mi+u)J1(mi+u) (70)

and
b=—> eJi(z; +u) (71)

are called thédessiarandgradient-weighted residual vectaespectively. These matrices are also

often written as
2
A= | 2 legy and b= | =t : (72)
Z[x]y Z]y Z[y[t

where the subscripts i), and/, denote spatial derivatives, afids called theemporal derivative
which makes sense if we are computing instantaneous welodit video sequence.

The gradients required fof, (x; + u) can be evaluated at the same time as the image warps
required to estimaté (x; + ), and in fact are often computed as a side-product of imagegat
lation. If efficiency is a concern, these gradients can b&aoegl by the gradients in themplate
image,

Ji(xi +u) = Jy(x), (73)

since near the correct alignment, the template and digplerget images should look similar.
This has the advantage of allowing the pre-computationeHéssian and Jacobian images, which
can result in significant computational savings (Hager aelthiBneur 1998, Baker and Matthews
2004).

The effectiveness of the above incremental update rulesrel the quality of the Taylor series
approximation. When far away from the true displacement {sa pixels), several iterations may
be needed. When started in the vicinity of the correct sohytnly a few iterations usually suffice.
A commonly used stopping criterion is to monitor the magietwf the displacement correction
|u|| and to stop when it drops below a certain threshold (ath of a pixel). For larger motions,
itis usual to combine the incremental update rule with adn@rical coarse-to-fine search strategy,
as described i§3.2.

Conditioning and aperture problems. Sometimes, the inversion of the linear system (69) can
be poorly conditioned because of lack of two-dimensiongiuiee in the patch being aligned. A
commonly occurring example of this is tlaperture problemfirst identified in some of the early
papers on optic flow (Horn and Schunck 1981) and then studie@ mxtensively by Anandan
(1989). Consider an image patch that consists of a slantgel eaving to the right. Only the
normal component of the velocity (displacement) can be reliabbovered in this case. This
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manifests itself in (69) as enk-deficientmatrix A, i.e., one whose smaller eigenvalue is very
close to zerd?

When equation (69) is solved, the component of the displacéaiong the edge is very poorly
conditioned and can result in wild guesses under small rp@sirbations. One way to mitigate
this problem is to add prior (soft constraint) on the expected range of motions (Simidneeal.
1991, Bakeet al.2004). This can be accomplished by adding a small value tdidgonal ofA,
which essentially biases the solution towards smalarvalues that still (mostly) minimize the
squared errot®

However, the pure Gaussian model assumed when using a qiimpt quadratic prior, as in
(Simoncelliet al. 1991), does not always hold in practice, e.g., because adialj along strong
edges (Triggs 2004). For this reason, it may be prudent tsade small fraction (say 5%) of the
larger eigenvalue to the smaller one before doing the mimvirsion?’

Uncertainty modeling The reliability of a particular patch-based motion estieneén be cap-
tured more formally with amncertainty modelThe simplest such model iscavariance matrix
which captures the expected variance in the motion estimaiépossible directions. Under small
amounts of additive Gaussian noise, it can be shown thaoWeriance matrix:q, is proportional
to the inverse of the Hessia,

Yu =0A"", (74)

wherec? is the variance of the additive Gaussian noise (Anandan,189Bthieset al. 1989,
Szeliski 1989). For larger amounts of noise, the lineaioraperformed by the Lucas-Kanade
algorithmin (67) is only approximate, so the above quatt#gomes th€ramer-Rao lower bound
on the true covariance. Thus, the minimum and maximum eajaes of the Hessiad can now
be interpreted as the (scaled) inverse variances in thededsin and most-certain directions of
motion.

Bias and gain, weighting, and robust error metrics. The Lucas-Kanade update rule can also
be applied to the bias-gain equation (41) to obtain

ELK—BG(U + A'U,) = Z[Jl (mz + ’U,)A’U, +e — alo(:ci) — ﬁ]Q (75)

7

15The matrix A is by construction always guaranteed to be symmetric pesi@mi-definite, i.e., it has real non-
negative eigenvalues.

18In the terminology of Horn and Schunck (1981), one could baythebrightness consistency constraiaie still
largely satisfied.

7For2 x 2 systems, the eigenvalues and eigenvectors have simptsdefosm solutions.
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(Lucas and Kanade 1981, Gennert 1988, Fuh and Maragos 18Réré® al.2003b). The resulting
4 x4 system of equations in can be solved to simultaneously attithe translational displacement
updateAw and the bias and gain parametgranda.*®
A similar formulation can be derived for images (templatd&t have dinear appearance
variation,
L(x+u) ~ Iz +Z/\B (76)

where theB;(x) are thebasis imagesind the)\; are the unknown coefficients (Hager and Bel-
humeur 1998, Bakeet al. 2003a, Bakeet al. 2003b). Potential linear appearance variations in-
clude illumination changes (Hager and Belhumeur 1998) amallsion-rigid deformations (Black
and Jepson 1998).

A weighted (windowed) version of the Lucas-Kanade algamith also possible,

Erx-wssp(u + Au) Z wo(z)wy (x; + w)[J1 (2 + w)Au + e;]%. (77)

Note that here, in deriving the Lucas-Kanade update fromotiggnal weighted SSD function
(37), we have neglected taking the derivativewefx; + u) weighting function with respect ta,
which is usually acceptable in practice, especially if theghting function is a binary mask with
relatively few transitions.

Bakeret al. (2003a) only use they(x) term, which is reasonable if the two images have the
same extent and no (independent) cutouts in the overlapre@hey also discuss the idea of mak-
ing the weighting proportional t& /(x), which helps for very noisy images, where the gradient
itself is noisy. Similar observation, formulated in ternfda@tal least square¢Huffel and Vande-
walle 1991), have been made by other researchers studyiinglopy (motion) estimation (Weber
and Malik 1995). Lastly, Bakeet al. (2003a) show how evaluating (77) at just tmest reliable
(highest gradient) pixels does not significantly reducdgoarance for large enough images, even
if only 5%-10% of the pixels are used. (This idea was originptoposed by Dellaert and Collins
(1999), who use a more sophisticated selection criterion.)

The Lucas-Kanade incremental refinement step can also edpp the robust error metric
introduced ing3.1,

ELK—SRD(U + A’U,) = Z p(J1 (CBZ + u)Au + 61‘). (78)
We can take the derivative of this function w.ftand set it to 0O,

Zw eZ —Zw ei)Ji(x+u) =0, (79)

8n practice, it may be possible to decouple the bias-gaimaeiibn update parameters, i.e., to solve two indepen-
dent2 x 2 systems, which is a little faster.
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whereV (e) = p/(e) is the derivative op. If we introduce a weight functiom(e) = W(e)/e, we
can write this as

> w(e) T (x + u)[J1(x; + u)Au +¢;] = 0. (80)
This results in thdteratively Re-weighted Least Squaadgorithm, which alternates between com-
puting the weight functions:(e;) and solving the above weighted least squares problem (Huber
1981, Stewart 1999). Alternative incremental robust |eagtares algorithms can be found in
(Sawhney and Ayer 1996, Black and Anandan 1996, Black andy&ajan 1996, Bakeet al.
2003a) and textbooks on robust statistics.

3.5 Parametric motion

Many image alignment tasks, for example image stitchingp Wandheld cameras, require the use
of more sophisticated motion models, as describéj2inSince these models typically have more
parameters than pure translation, a full search over thsildesrange of values is impractical.
Instead, the incremental Lucas-Kanade algorithm can bergkred to parametric motion models
and used in conjunction with a hierarchical search algori(hucas and Kanade 1981, Rehg and
Witkin 1991, Fuh and Maragos 1991, Bergetral. 1992, Baker and Matthews 2004).

For parametric motion, instead of using a single constanstation vecton, we use a spatially
varyingmotion fieldor correspondence mag’(x; p), parameterized by a low-dimensional vector
p, wherex’ can be any of the motion models presentegdin The parametric incremental motion
update rule now becomes

Ergx_pm(p+ Ap) = Z[h(m'(wi;p—FAP)) — Io(x;)]?

(2

~ Y [L() + T () Ap — Io(z:)]? (81)

= Y [Ji(z)Ap + el (82)
where the Jacobian is now o1 B
/ / Y

Ji(w;) = 8—; = Vfl(%‘i)%(@‘i) (83)

i.e., the product of the image gradieWt/; with the Jacobian of correspondence fieltl, =

ox'/Op.

Table 2 shows the motion Jacobiaiig. for the 2D planar transformations introducedsi
Note how | have re-parameterized the motion matrices sctliegtare always the identity at the
origin p = 0. This will become useful below, when we talk about the contpm®al and inverse
compositional algorithms. (It also makes it easier to ingomsors on the motions.)
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Transform| Matrix | Parameters | JacobianJ 5 |

[ 10 ¢, ] [ 10 ]
translation 0 1 2, (tast,) 0 1
[ Co —So la ] [ 1 0 —spz—cpy ]
Euclidean So Co Uy (s, t,.0) 0 1 coz— sy
l+a —b tm] llox—y]
similarity b l4a t, (ta, by, a,b) 01y =
14 ap  aol tx] {10:::3/00]
affine apg  l+an (ta, ty, o0, Qo1 10, A1) 0100 2y
L+ho  hot  ho
1o L+ hiy hio
projective hao hay 1 (hoo, - - -, hat) (see text)

Table 2; Jacobians of the 2D coordinate transformations.

The derivatives in Table 2 are all fairly straightforwardgcept for the projective 2-D motion
(homography), which requires a per-pixel division to eeady) c.f. (8), re-written here in its new
parametric form as

o (1 + hoo)z + hory + hoo and o — hiox + (14 hi1)y + h12. (84)
hgol‘ + hgly +1 hgol’ + hgly +1
The Jacobian is therefore

ox’ 1 1000 —2'z —2
Jp =2 2| " Y S (85)
op D|0 00z y 1 —yz —yy

whereD is the denominator in (84), which depends on the currentpeter settings (as dd and
Y).
For parametric motion, thdessianandgradient-weighted residual vectbecome
A =3 Tp (@) VI () V()] T (2:) (86)
and

b= Jg(x)[e:VI] (). (87)

Note how the expressions inside the square brackets arathe enes evaluated for the simpler
translational motion case (70-71).
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Patch-based approximation. The computation of the Hessian and residual vectors fompetra
ric motion can be significantly more expensive than for tladtational case. For parametric
motion withn parameters and/ pixels, the accumulation ofi andb takes @n”N) operations
(Baker and Matthews 2004). One way to reduce this by a sigmifiamount is to divide the image
up into smaller sub-blocks (patches) and to only accumtitetsimpler2 x 2 quantities inside the
square brackets at the pixel level (Shum and Szeliski 200 .full Hessian and residual can then
be re-written as

A=) Jp(&)]Y VI (@) V()] T (2) (88)
i 1€P;
and
b= JL (&)Y e:VIT (@), (89)
7 1€EP;

wherez; is thecenterof each patchP;. This is equivalent to replacing the true motion Jacobian
with a piecewise-constant approximation. In practices thorks quite well (Szeliski and Shum
1997). The relationship of this approximation to featuasdd registration is discussech4.

Compositional approach For a complex parametric motion such as a homography, th@aom
tation of the motion Jacobian becomes complicated, and nvajve a per-pixel division. Szeliski
and Shum (1997) observed that this can be simplified by firgbiwg the target imagé according
to the current motion estimaié€(x; p),

Li(z) = Li(z'(z; p)), (90)

and then comparing thisarpedimage against the templaig(x),

Erk_ss(Ap) = Z[Il(j(wi;Ap))_[o(wi)]z

)

~ Z[jl(wi)Ap + e4)? (91)

)

= Y [VIi(z:)J g(x:) Ap + e;]*. (92)

)

Note that since the two images are assumed to be fairly sinoitdy anincrementalparametric
motion is required, i.e., the incremental motion can bewatald aroungh = 0, which can lead
to considerable simplifications. For example, the Jacobidhe planar projective transform (84)
now becomes

ox
op p=o
Once the incremental motianhas been computed, it can jpependedo the previously estimated
motion, which is easy to do for motions represented withdf@mation matrices, such as those

Jz = (93)

ez y 1000 —2* —ay
1000z y 1 —zy —y? |
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given in Tables 1-2. Baker and Matthews (2004) call thisftmeard compositionallgorithm,
since the target image is being re-warped, and the final mestimates are being composed.

If the appearance of the warped and template images is sigmlaugh, we can replace the
gradient ofl, (x) with the gradient ofly(x), as suggested previously in (73). This has potentially
a big advantage, in that it allows the pre-computation (amvérsion) of the Hessian matrid
given in (86). The residual vectdr (87) can also be partially precomputed, i.e., Hteepest
descentmagesVI,(x)J 4 (x) can precomputed and stored for later multiplication withdfx) =
I,(x) — I,(x) error images (Baker and Matthews 2004). This idea was figgested by Hager
and Belhumeur (1998) in what Baker and Matthews (2004) calhaard additivescheme.

Baker and Matthews (2004) introduce one more variant théytloainverse compositional
algorithm. Rather than (conceptually) re-warping the \edrparget imagefl(:c), they instead
warp the template imagh () and minimize

Eix-sm(Ap) = Z[[l(:cz) — Ip(Z(xs; Ap)))?
> _[Vio(xi)J 3 (i) Ap — ei]”. (94)

2

Q

This is identical to the forward warped algorithm (92) Withetgradientyfl(m) replaced by the
gradientsV I(x), except for the sign of;. The resulting updaté\p is the negativeof the one
computed by the modified (92), and hence ithheerseof the incremental transformation must be
prepended to the current transform. Because the inverspasitional algorithm has the potential
of pre-computing the inverse Hessian and the steepestrigstages, this makes it the preferred
approach of those surveyed in (Baker and Matthews 2004).

Baker and Matthews (2004) also discusses the advantagengf@auss-Newton iteration (i.e.,
the first order expansion of the least squares, as abovejhes. approaches such as steepest de-
scent and_evenberg-MarquardtSubsequent parts of the series (Baeal. 2003a, Bakekt al.
2003b, Bakeet al. 2004) discuss more advanced topics such as per-pixel viregglpixel selec-
tion for efficiency, a more in-depth discussion of robustmmustand algorithms, linear appearance
variations, and priors on parameters. They make for in\dduseading for anyone interested in
implementing a highly tuned implementation of incrementege registration.

4 Feature-based registration

As | mentioned earlier, directly matching pixel intensstis just one possible approach to image
registration. The other major approach is to first extrastinictive featuresfrom each image, to

match individual features to establish a global correspand, and to then estimate the geometric
transformation between the images. This kind of approashblean used since the early days of
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stereo matching (Hannah 1974, Hannah 1988) and has morglyegained popularity for image
stitching applications (Zoghlaneit al. 1997, Capel and Zisserman 1998, Cham and Cipolla 1998,
Badraet al. 1998, McLauchlan and Jaenicke 2002, Brown and Lowe 2003).

In this section, | review methods for detecting distinctpants, for matching them, and for
computing the image registration, including the 3D rotatioodel introduced i§2.2. | also dis-
cuss the relative advantages and disadvantages of diéttature-based approaches.

4.1 Interest point detectors

As we saw in§3.4, the reliability of a motion estimate depends mostaalty on the size of the
smallest eigenvalue of the Lucas and Kanade (1981) Hessadmxim\, (Anandan 1989). This
makes this a reasonable candidate for finding points in tlagérhat can be matched with high
accuracy. (Older terminology in this field talked about ‘fver-like” features, but the modern usage
isinterest pointg Indeed, Shi and Tomasi (1994) propose using this quatatiipd good features
to track and then use a combination of translational and affineebpateh alignment to track such
points through an image sequence.

Using a square patch with equal weighting may not be the beste. Instead, a Gaussian
weighting function can be used. Forstner (1986) and Hamis Stephens (1988) both proposed
finding interest points using such an approach. The pel-pigesian can be efficiently evaluated
using a sequence of filters and algebraic operations,

G.(x) = %ng(m) x I(x), (95)

G@) = 5.Guf@)+ 1), (96)
[ @@ @G

B@) = q@o@ e | 57)

A(z) = G, (z)*Blz) (98)

)\071@) _ Qoo + a11 F \/(aoo —an)?+ @016110’ (99)

2

whereG,, is a noise-reducing pre-smoothing “derivative” filter ofdth o4, andG,, is the in-
tegration filter whose scale; controls the effective patch size. (Thg are the entries in the
A(x) matrix, where | have dropped thie) for succinctness.) For example, Forstner (1994) uses
o4 = 0.7 ando; = 2. Once the minimum eigenvalue image has been computed,if@ama can
be found as potential interest points.

The minimum eigenvalue is not the only quantity that can bEdus find interest points. A

27



simpler quantity, proposed by Harris and Stephens (1988) is
det(A) — a tracd A)* = MM, — a(Ag + \1)? (100)
with o = 0.06. Triggs (2004) suggest using the quantity
Ao — aM (101)

(say witha = 0.05), which reduces the response at 1D edges, where aliasiog eswmetimes
affect the smaller eigenvalue. He also shows how the Basic2 Hessian can be extended to
parametric motions to detect points that are also accyrktedlizable in scale and rotation.

Schmidet al. (2000) survey the truly vast literature on interest poinedgon and perform
some experimental comparisons to determinerépeatabilityof feature detectors, which is de-
fined as the frequency with which interest points detectezhmimage are found within= 1.5
pixels of the corresponding location in a warped image. Tdiey measure thaformation content
available at each detected feature point, which they defintbeentropy of a set of rotationally
invariant local grayscale descriptors. Among the techesqtihey survey, they find that am-
provedversion of the Harris operator with, = 1 ando; = 2 works best. (The original Harris
and Stephens (1988) paper uses a disdrete—1 0 1 2] filter to perform the initial derivative
computations, and performs much worse.)

More recently, feature detectors that are more invariast&be (Lowe 1999, Mikolajczyk and
Schmid 2001) and affine transformations (Mikolajczyk antir8icd 2002) have been proposed.
These can be very useful when matching images that havedtiffscales or strongly different
aspects (e.g., for 3D object recognition). A simple way thiewe scale invariance is to look
for maxima in a Difference of Gaussian (DOG) (Lowe 1999) orridecorner (Mikolajczyk and
Schmid 2001, Triggs 2004) detector over a sub-octave pyharei, an image pyramid where the
subsampling between adjacent levels is less than a facteoolowe’s original (1999) paper uses
a half-octave {/2) pyramid, whereas Triggs (2004) recommends using a quactaxe ¢/2).

Of course, interest points are not the only kind of featuhes tan be used for registering
images. Zoghlamet al. (1997) use line segments as well as point-like featurestimate ho-
mographies between pairs of images, whereas (Batai. 2004) use line segments with local
correspondences along the edges to extract 3D structurenatidn. Tuytelaars and Van Gool
(2004) use affine invariant regions to wide baseline steratrining. While these techniques can
be used to solve image registration problems, they will eatdvered in more detail in this survey.

4.2 Feature matching

After detecting the features (interest points), we nmatchthem, i.e., determine which features
come from corresponding locations in different images. dms situations, e.g., for video se-
guences (Shi and Tomasi 1994) or for stereo pairs that harereetified (Scharstein and Szeliski
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2002), the local motion around each feature point may belyiwahslational. In this case, the er-
ror metrics introduced i§3.1 such a%/ssp or Excc can be used to directly compare the intensities
in small patches around each feature point. (The comparatidy by Mikolajczyk and Schmid
(2003) discussed below uses cross-correlation.) Becaasaré points may not be exactly located,
a more accurate matching score can be computed by perfornuregnental motion refinement as
described ir§3.4, but this can be time consuming.

If features are being tracked over longer image sequertugis apppearance can undergo larger
changes. In this case, it makes sense to compare appeausngsnaffinemotion model. Shi
and Tomasi (1994) compare patches using a translationatlhhetiveen neighboring frames, and
use the location estimate produced by this step to inigaiz affine registration between the patch
in the current frame and the base frame where a feature wasldtected. In fact, features are
only detected infrequently, i.e., only in region where kiag has failed. In the usual case, an area
around the currenpredictedlocation of the feature is searched with an incrementalstesgion
algorithm. This kind of algorithm is detect then traclkapproach, since detection occurs infre-
guently. It is appropriate for video sequences where the@epl locations of feature points can be
reasonably well predicted.

For larger motions, or for matching collections of imagesevehthe geometric relationship
between them is unknown (Schaffalitzky and Zisserman 280@wn and Lowe 2003), detect
then matchapproach in which feature points are first detected in allg@sas more appropriate.
Because the features can appear in different orientatindsseale, a moreiew invariantkind
of representation must be used. Mikolajczyk and Schmid 3p0€&view some recently developed
view-invariant local image descriptors and experimeptatimpare their performance.

The simplest method to compensate for in-plane rotatiots fsnd adominant orientation
at each feature point location before sampling the patchloeravise computing the descriptor.
Mikolajczyk and Schmid (2003) use the direction of the agergradient orientation, computed
within a small neighborhood of each feature point. The dpgmrcan be made invariant to scale by
only selecting feature points that are local maxima in sspére, as discussedis.1. Making the
descriptors invariant to affine deformations (stretch astpiskew) is even harder; Mikolajczyk and
Schmid (2002) use the local moment matrix around a feature podefine a canonical frame.

Among the local descriptors that Mikolajczyk and SchmidGQ20compared, David Lowe’s
(1999) Scale Invariant Feature Transform (SIFT) and Freearad Adelson’s (1991) steerable
filters performed the best. SIFT features are computed kyeltgmating a local orientation using
a histogram of the local gradient orientations, which iseptitlly more accurate than just the
average orientation. Once the local frame has been edtatlligradients are copied into different
orientation planes, and blurred resampled versions okthreages as used as the features. This
provides the descriptor with some insensitivity to smaditéee localization errors and geometric
distortions (Lowe 1999).
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Steerable filters are combinations of derivative of GausBiters that permit the rapid com-
putation of even and odd (symmetric and anti-symmetricedd@ and corner-like features at all
possible orientations (Freeman and Adelson 1991). Bedhegaise reasonably broad Gaussians,
they too are somewhat insensitive to localization and taign errors. In their experimental
comparisons, Mikolajczyk and Schmid (2003) found that Si&atures generally performed best,
followed by steerable filters, and then cross-correlatiwm¢h could potentially be improved with
an incremental refinement of location and pose). Diffeedntivariants, whose descriptors are
insensitive to changes in orientation by design, did notsloall.

Rapid indexing and matching. The simplest way to find all corresponding feature points in
an image pair is to compare all features in one image agdirfstadures in the other, using one
the local descriptors described above. Unfortunatelg, hguadratic in the expected number of
features, which makes it impractical for some applications

More efficient matching algorithms can be devised usingedtifit kinds oindexing schemes
Many of these are based on the idea of finding nearest neiglbbigh-dimensional spaces. For
example, Nene and Nayar (1997) developed a technique thleslicang that uses a series of 1D
binary searches to efficiently cull down a list of candidatenfs that lie within a hypercube of the
guery point. They also provide a nice review of previous wiarthis area, including spatial data
structures such asd trees (Samet 1989). Beis and Lowe (1997) propose a BesFiBst (BBF)
algorithm, which uses a modified search ordering férdtree algorithm so that bins in feature
space are searched in the order of their closest distanceduery location. Shakhnaroviah
al. (2003) extend a previously developed technique cdbedlity-sensitive hashingvhich uses
unions of independently computed hashing functions, to beemsensitive to the distribution of
points in parameter space, which they galfameter-sensitive hashinBespite all of this promis-
ing work, the rapid computation of image feature corresgoieés is far from being a solved
problem.

RANSAC and LMS. Once an initial set of feature correspondences has beenutedipwve
need to find a set that is will produce a high-accuracy alignmé®ne possible approach is to
simply compute a least squares estimate, or to use a robdditeratively re-weighted) version
of least squares, as discussed belpd3). However, in many cases, it is better to first find a good
starting set oinlier correspondences, i.e., points that are all consistentswitire particular motion
estimatet®

Two widely used solution to this problem are called RandormBke Consensus, or RANSAC
for short (Fischler and Bolles 1981) alehst median of squardEMS) (Rousseeuw 1984). Both

19For direct estimation methods, hierarchical (coarsefte)fiechniques are often used to lock ontodbeninant
motionin a scene (Bergeet al. 1992).
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techniques start by selecting (at random) a subsét adrrespondences, which is then used to
compute a motion estimage as described if4.3. Theresidualsof the full set of correspondences
are then computed as

ri = &j(x;;p) — &, (102)
where z; are theestimated(mapped) locations, andt, are the sensed (detected) feature point
locations.

The RANSAC technique then counts the numbeimdiers that are withine of their detected
location, i.e., whosdir;|| < e. (Thee value is application dependent, but often is around 1-3
pixels.) Least median of squares finds the median value dfitHevalues.

The random selection process is repeatetimes, and the sample set with largest number
of inliers (or with the smallest median residual) is kept las tinal solution. Either the initial
parameter guegsor the full set of computed inliers is then passed on to th¢ da&ta fitting stage.

To ensure that the random sampling has a good chance of fiadiing set of inliers, a sufficient
number of trialsS must be tried. Lep be the probability that any given correspondence is valid,
andP be the total probability of success aftetrials. The likelihood in one trial that all random
samples are inliers ig*. Therefore, the likelihood that such trials will all fail is

1-P=(1-p"° (103)
and the required minimum number of trials is

_ log(1—P)

- log(1 —pk)’
Stewart (1999) gives the following examples of the requimadhber of trialsS to attain a 99%
probability of success:

(104)

k|l p| S
3105] 35
606| 97|
610.5](293

As you can see, the number of trials grows quickly with the bhanof sample points used.
This provides a strong incentive to use thenimumnumber of sample points possible for any
given trial, which in practice is how RANSAC is normally used

4.3 Geometric registration

Now that we have computed a set of matched feature pointsmwrelences, we still need to
estimate the motion parametgrghat best register the two images. The usual way to do this is
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to use least squares, i.e., to minimize the sum of squarédueds given by (102). Many of the
motion models presented §2, i.e., translation, similarity, and affine, havdirgear relationship
between the motion and the unknown paramepeisin this case, a simple linear regression (least
squares) using normal equatioAp = b works well?!
For non-linear measurement equations such as the homography given inré8#)tten here
(for convenience) as
o (1 + hoo)x + hory + hoo and ' — hior + (1 4 h11)y + hio
hoox + hory + 1 hoox + hory + 1
a different solution is required. An initial guess for ther&knowns{ h, . . ., hs; } can be obtained
by multiplying both sides of the equations through by theaheimator, which yields the linear set

of equations,

: (105)

A cy 1000 —2z —3 froo
. =Y N N (106)
Yy —y 0 00 29y 1 —yx —9y

h21

However, this is not optimal from a statistical point of viesince the denominator can vary quite
a bit from point to point.

One way to compensate for this isresweighteach equation by the inverse of current estimate
of the denominator),

hOO

1 — 1 1 S
D e O o | R R
D|g—y D10 00z vy 1 —gx —gy )

21

While this may at first seem to be the exact same set of eqsadi®Ii106), since least squares is
being used to solve the over-determined set of equatioasy#ightingsdo matter, and result in a
different set of normal equations that perform better ircpca (with noisy data).

The most principled way to do the estimation, however, isiteally minimize the squared
residual equations (102) using the Gauss-Newton appraxima.e., performing a first-order Tay-
lor series expansion ip, which yields,

f%; - 53;(%7?) =JgpAp (108)
or

(109)

D

-2 1|z y 1000 =2z -2
v-9 | 0002y 1l —go —iy

Ahg

202-D Euclidean motion can be estimated with a linear algorithy first estimating the cosine and sine entries
independently, and then normalizing them so their mageitad.

21For poorly conditioned problems, it is sometimes prefexatise QR decomposition on the set of linear equations
instead of normal equation (Golub and Van Loan 1996). Howeweh conditions rarely arise in image registration.
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While this looks similar to (107), it differs in two importanespects. First, the left hand side
consists of unweightedrediction errorsrather than pixel displacements, and the solution vector
is aperturbationto the parameter vectgr. Second the quantities insidgy/ involve predicted
feature location$i’, ') instead ofsensedeature location$z’, ¢'). Both of these are subtle, and
yet they lead to an algorithm that, when combined with prapercking for downhill steps (as in
the Levenberg-Marquardt algorithm), will converge to a imam. (Iterating the (107) equations
is not guaranteed to do so, since it is not minimizing a wefirted energy function.)

Rotational panoramas. How to update the rotation matrix given by (17) using the émeental
update first described in (Szeliski and Shum 1997, Shum aelis&z2000).
Need to describe my preferred representation for rotatiwhih is quaternions.

Uncertainty weighting. How to incorporate & x 2 uncertainty matrix, and how this relates to
direct methods.

Robust regression. How to apply an M-estimator, as given Bk p, but directly to the position
residuals. Why Gauss-Newton iteration (i.e., iterativehweighted least squares) is required.

4.4 Direct vs. feature-based

How | used to be in the direct matching camp (Trigg®l. 2000), but since reading (Brown and
Lowe 2003) and working with feature based methods, | thimly hre preferable for large-motion
stitching applications. However, combining these with ecpdased refinement can lead to higher
accuracy and potentially better de-ghosting.

5 Global registration

How to take pairwise results and extend to full mosaic (Skedind Shum 1997, Shum and Szeliski
2000, Hsu and Sawhney 1998, Sawhney and Kumar 1999, Coorfedad2000)

5.1 Bundle adjustment

Basically taken from (Shum and Szeliski 2000), but with refee to general bundle adjustment
algorithms (Triggset al. 1999)
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5.2 Parallax removal

In (Shum and Szeliski 2000), this is callkExtal alignment

de-ghosting, i.e., parallax and lens distortion removhl{B and Szeliski 2000) (uses interpo-
lated block-based flow + bundle adjuster)

compensating for motion (Kangt al. 2003)

3D parallax: plane+parallax (Kumat al. 1994b, Sawhney 1994, Szeliski and Coughlan 1994,
Szeliski and Coughlan 1997) 3-D parallax (Kunedrl. 1995, Szeliski and Kang 1995),

MPPS (Uyttendaelet al. 2004, Kanget al. 2004)

If we know the camera motion, then can use a 3D reconstrudilaice the camera in-between,
and re-generate new locations.

5.3 Recognizing panoramas

First rapidly discover which pairs have sufficient overlafpé good candidates (Brown and Lowe
2003). Then, find connected components in this graph.

In practice, may be erroneous matches, need a way to “batlobutake the process more
robust.

Show example where solution is ambiguous: Doorway w/ treeatitedral with windows vs.
moving persons

6 Compositing

Once we have registered all of the input images with respeeath other, we need to decide how
to produce the final stitched (mosaic) image. This invohateding a final compositing surface
(flat, cylindrical, spherical, etc.) and view (referenceagm). It also involves selecting which pixels
contribute to the final composite and how to optimally blelnelse pixels to minimize the visible
seams, blur, and ghosting.

In this section, | review techniques that address theselgmd) namely compositing surface
parameterization, pixel/seam selection, blending, anqmb&xre compensation. My emphasis is
on fully automatedapproaches to the problem. Since the creation of high{guadinoramas and
composites is as much amtistic endeavor as a computational one, various interactive tee
been developed to assist this process, e.g., (Agaretadh 2004, Liet al. 2004a, Rotheet al.
2004), which I will not cover, except where they provide am#ted solutions to our problems.
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6.1 Choosing a compositing surface

The first choice to be made is how to represent the final imdgmly a few images are stitched
together, a natural approach is to select one of the imag#seasferenceand to then warp all
of the other images into the reference coordinate systera.r@sulting composite is calledflat
panorama, since the projection onto the final surface isasplerspective projection, and hence
straight lines remain straight (which is usually a deseaditribute).

For larger fields of view, however, we cannot maintain a flpt@sentation without excessively
stretching pixels near the border of the image. (In practiaepanoramas start to look severely dis-
torted once the field of view excee@® or so.) The usual choice for compositing larger panoramas
is to use a cylindrical (Szeliski 1994, Chen 1995) or spla(igzeliski and Shum 1997) projection,
as described i§2.3. In fact, any surface used fenvironment mappinm computer graphics can
be used, including aube maghat represents the full viewing sphere with the six squaces of
a box (Greene 1986, Szeliski and Shum 1997). Cartograplaeesdlso developed a number of
alternative methods for representing the globe .

The choice of parameterization is somewhat applicatioredéent, and involves a tradeoff
between keeping the local appearance undistorted (eapirgpstraight lines straight) and provid-
ing a reasonably uniform sampling of the environment. Awtoally making this selection and
smoothly transitioning between representations baseteaxtent of the panorama is an interest-
ing topic for future research.

View selection. Once we have chosen the output parameterization, we séil tee determine
which part of the scene will beenteredn the final view. As mentioned above, for a flat composite,
we can choose one of the images as a reference. Often, a abésahoice is the one that is
geometrically most central. For example, for rotationahggamas represented as a collection
of 3D rotation matrices, we can choose the image wheagis is closest to the averageaxis
(assuming a reasonable field of view). Alternatively, we aa@ the average-axis (or quaternion,
but this is trickier) to define the reference rotation.

For larger (e.g., cylindrical or spherical) panoramas, ae still use the same heuristic if a
subset of the viewing sphere has been imaged. If the casdl @6fli panoramas, a better choice
might be to choose the middle image from the sequence ofsnputsometimes the first image,
assuming this contains the object of greatest interestl bf these cases, having the user control
the final view is often highly desirable. If the “up vector’maputation described i§??is working
correctly, this can be as simple as panning over the imagetting a vertical “center line” for the
final panorama.
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Coordinate transformations. Once we have selected the parameterization and refereese vi
we still need to compute the mappings between the input atpdibpixels coordinates.

If the final compositing surface is flat (e.g., a single plan¢he face of a cube map) and the
input images have no radial distortion, the coordinatesfi@mation is the simple homography
described by (17). This kind of warping can be performed apbics hardware by appropriately
setting texture mapping coordinates and rendering a smgldrilateral.

If the final composite surface has some other analytic forign (eylindrical or spherical), we
need to convert every pixel in the final panorama into a vigwiay (3D point) and then map
it back into each image according to the projection (andooytlly radial distortion) equations.
This process can be made more efficient by precomputing soakeip tables, e.g., the partial
trigonometric functions needed to map cylindrical or sptarcoordinates to 3D coordinates, or
the radial distortion field at each pixel. Itis also be pokesib accelerate this process by computing
exact pixel mappings on a coarser grid and then interpgjdtiase values. An efficient way to
roughly know which portions of the final panorama are covénednhich input images can also be
helpful.

When the final compositing surface is a texture-mapped alsdn, a slightly more sophis-
ticated algorithm must be used (Szeliski and Shum 1997). adiyt do the 3D and texture map
coordinates have to be properly handled, but a small amduoterdrawoutside of the triangle
footprints in the texture map is necessary, to ensure tedettiure pixels being interpolated during
3D rendering have valid values.

Sampling issues. While the above computations can yield the correct (fractippixel addresses
in each input image, we still need to pay attention to sangpksues. For example, if the final
panorama has a lower resolution than the input images, Ipggffg the input images is neces-
sary to avoid aliasing. These issues have been extensivglied in both the image processing
and computer graphics communities. The basic problem isttgpate the appropriate pre-filter,
which depends on the distance (and arrangement) betwegmoeing samples in a source image.
Various approximate solutions, such as MIP mapping (Wiibal983) or elliptically weighted
Gaussian averaging (Greene and Heckbert 1986) have beeloped in the graphics commu-
nity. For highest visual quality, a higher order (e.g., c)lmterpolator combined with a spatially
adaptive pre-filter may be necessary (Wah@l. 2001). Under certain conditions, it may also be
possible to produce images with a higher resolution thannpet images using a process called
super-resolutior{§7).
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Figure 3: Final composites computed by a variety of algorithms: (a@rage, (b) median, (c) feathered
average, (dp-normp =7, (e) Vornoi, (f) weighted ROD vertex cover with featherifw),graph cut seams,
(h) graph cut seams with Poisson blending.

6.2 Pixel selection and weighting

Once the source pixels have been mapped onto the final composface, we must still decide
how to blend them in order to create an attractive lookingopama. If all of the images are in
perfect registration and identically exposed, this is asygaoblem (any pixel or combination
will do). However, for real images, visible seams (due toaxpe differences), blurring (due to
mis-registration), or ghosting (due to moving objects) cacur.

Creating clean, pleasing looking panoramas involves bethdihg which pixels to use and
how to weight or blend them. The distinction between thesedtages is a little fluid, since per-
pixel weighting can be though of as a combination of selectind blending. In this section, |
discuss spatially varying weighting, pixel selection (egdacement), and then more sophisticated
blending.

Feathering and center-weighting. The simplest way to create a final composite is to simply
take anaveragevalue at each pixel,

C(x) = Zwk(m)fk(m) /Z wi(x) , (110)
k k

wherel,(x) are thewarped(re-sampled) images and,(x) is 1 at valid pixels and 0 elsewhere.
On computer graphics hardware, this kind of summation capdr®rmed in araccumulation
buffer (using theA channel as the weight).

Simple averaging usually does not work very well, since sxpe differences, mis-registra-
tions, and scene movement are all very visible (Figure 3agpidly moving objects are the only
problem, taking anedianfilter (which is a kind of pixel selection operator) can oftea used
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to remove them (Irani and Anandan 1998) (Figure 3b). Comharsenter-weighting (discussed
below) andminimum likelihoodselection (Agarwalat al. 2004) can sometimes be used to retain
multiple copies of a moving object.

A better approach to averaging is to weight pixels near tinéecef the image more heavily or
to down-weight pixels near the edges. When an image has sotoetcegions, down-weighting
pixels near the edges of both cutouts and edges is prefer@hle can be done by computing a
distance majr grassfire transform
; (111)

wg(x) = ||arg n%}n{HyH | I(x + y) is invalid }

where each valid pixel is tagged with its Euclidean distatacéhe nearest invalid pixel. The
Euclidean distance map can be efficiently computed usingagtags raster algorithm (Danielsson
1980, Borgefors 1986). Weighted averaging with a distanae isoften calledeathering(Szeliski
and Shum 1997, Uyttendaed al. 2001), and does a reasonable job of blending over exposure
differences. However, blurring and ghosting can still belyems (Figure 3c). Note that weighted
averaging ishot the same as compositing the individual images with the asger operation
(Porter and Duff 1984, Blinn 1994), even when using the weigtiues (normalized to sum up
to one) aslpha(translucency) channels. This is because the over operatienuates the values
from more distant surfaces, and hence is not equivalent ti@atdsum?2

One way to improve feathering is to raise the distance maypegalo some large power, i.e.,
to usew(x) in (110). The weighted averages then become dominated biprher values, i.e.,
they act somewhat like g-norm The resulting composite can often provide a reasonahledf&
between visible exposure differences and blur (Figure 3d).

In the limit asp — oo, only the pixel with the maximum distance value gets setécte

C(iL’) = Il(w)(m), (112)

where
[ = arg max w(x) (113)

is thelabel assignmenor pixel selectiorfunction that selects which image to use at each pixel.
This hard pixel selection process produces a visibilitykrsensitive variant of the familiarornoi
diagram which assigns each pixel to the nearest image center ireti®&odet al. 1997, Peleg

et al. 2000). The resulting composite, while useful for artistiagdaince and in high-overlap
panoramasnfanifold mosaigstends to have very hard edges with noticeable seams when the
exposures vary (Figure 3e).

2?However, if the final compositing order is knownjstpossible to compute a set of alpha values that will do the
right thing, but doing this is as much work as performing thigioal weighted blend.
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Xiong and Turkowski (1998) use this Vornoi idea (local madimof the grassfire transform)
to select seams for Laplacian pyramid blending (which isuised below). However, since the
seam selection is performed sequentially as new imagesldesian, some artifacts can occur.

Optimal seam selection. Computing the Vornoi diagram is one way to selectdhamsetween
regions where different images contribute to the final cositpo However, Vornoi images totally
ignore the local image structure underlying the seam.

A better approach is to place the seams in regions where thgasnagree, so that transitions
from one source to another are not visible. In this way, tige@thm avoids “cutting through”
moving objects, where a seam would look unnatural (DavisBL9%or a pair of images, this
process can be formulated as a simple dynamic programngtdrom one (short) edge of the
overlap region and ending at the other (Milgram 1975, Migra977, Davis 1998, Efros and
Freeman 2001).

When multiple images are being composited, the dynamicrprogdea does not readily gen-
eralize. (For square texture tiles being composited sd@lignEfros and Freeman (2001) run a
dynamic program along each of the four tile sides.)

To overcome this problem, Uyttendaeleal. (2001) observed that for well-registered images,
moving objects produce the most visible artifacts, nanralydlucent lookinghosts Their system
therefore decides which objects to keep, and which onesageerfirst, the algorithm compares
all overlapping input image pairs to determnegions of differencéRODs) where the images dis-
agree. Next, a graph is constructed with the RODs as verdicdsdges representing ROD pairs
that overlap in the final composite. Since the presence oflge endicates an area of disagree-
ment, vertices (regions) must be removed from the final cam@aintil no edge spans a pair of
unremoved vertices. The smallest such set can be computepaigertex coverlgorithm. Since
several such covers may existyaighted vertex coves used instead, where the vertex weights are
computed by summing the feather weights in the ROD. The dhgortherefore prefers removing
regions that are near the edge of the image, which reducdikéfibood that objects which are
only partially visible will appear in the final composite. €@nthe required regions of difference
have been removed, the final composite is created usingteefeatblend (Figure 3f).

A different approach to pixel selection and seam placemastrecently proposed by Agarwala
et al. (2004). Their system computes the label assignment thathizets the sum of two objective
functions. The firstis a per-pix@hage objectivéhat determines which pixels are likely to produce
good composites,

xr

where D,z () is thedata penaltyassociated with choosing imagat pixelz. In their system,
users can select which pixels to use by “painting” over argenaith the desired object or appear-
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ance, which set®(x,[) to a large value for all labelsother than the one selected by the user.
Alternatively, automated selection criteria can be usedhsasmaximum likelihoodhat prefers
pixels which occur repeatedly (for object removal),nanimum likelihoodor objects that occur
infrequently (for greatest object retention).

The second term is seam objectivéhat penalizes differences in labelings between adjacent
images,

Cs= Y. Suzuy(zy) (115)
(T, Y)eN

where Sz y)(, y) is the image-dependeimteraction penaltyor seam cosbf placing a seam
between pixelse andy, and \V is the set ofN, neighboring pixels. For example, the simple
color-based seam penalty used in (Kwadtal. 2003, Agarwalat al. 2004) can be written as

Suayi) (@, y) = | Ly (@) — Ly (@) + || Ty (y) — Ty (W) . (116)

More sophisticated seam penalties can also look at imagkegta or the presence of image edges
(Agarwalaet al.2004). Seam penalties are widely used in other computervegplications such
as stereo matching (Boykat al.2001) to give the labeling function itoherencer smoothness
The sum of the two objective functions is often calledMerkov Random FielMRF) energy,
since it arises as the negative log-likelihood of an MRFtistion (Geman and Geman 1984). For
general energy functions, finding the minimum can be NP-Baoykov et al. 2001). However,
a variety of approximate optimization techniques have lmreloped over the years, including
simulated annealingGeman and Geman 1984), graph cuts (Boy&bal.2001), and loopy belief
propagation (Tappen and Freeman 2003). Both Kwetra. (2003) and Agarwalat al. (2004)
use graph cuts, which involves cycling through a set of sempiexpansiorre-labelings, each of
which can be solved with a graph cut (max-flow) polynomiatdialgorithm (Boyko\et al.2001).
For the result shown in Figure 3g, Agarwadtal. (2004) use a large data penalty for invalid
pixels and O for valid pixels. Notice how the seam placeméguraéhm avoids regions of differ-
ences, including those that border the image and which méghit in cut off objects. Graph cuts
(Agarwalaet al. 2004) and vertex cover (Uyttendaedeal. 2001) often produce similar looking
results, although the former is significantly slower sirtatimizes over all pixels, while the latter
is more sensitive to the thresholds used to determine regibdifference.

6.3 Blending

Once the seams have been placed and unwanted object remevstil| need to blend the images
to compensate for exposure differences and other misrakgis. The spatially-varying weighting
(feathering) previously discussed can often be used tonaglish this. However, it is difficult in

practice to achieve a pleasing balance between smoothirigwrequency exposure variations
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and retaining sharp enough transitions to prevent blurg@itpough using a high exponent does
help).

Laplacian pyramid blending. An attractive solution to this problem was developed by Bund
Adelson (1983). Instead of using a single transition widtHrequency-adaptive width is used
by creating a band-pass (Laplacian) pyramid and makingrmesition widths a function of the
pyramid level. The process operates as follows.

First, each warped image is converted into a band-passdtiapl) pyramid, which involves
smoothing each level with Hi6(1, 4, 6, 4, 1) binomial kernel, subsampling the smoothed image by
a factor of 2, and subtracting the reconstructed (low-pasaye from the original. This creates a
reversible, overcomplete representation of the imageasidgmvalid and edge pixels are filled with
neighboring values to make this process well defined.

Next, themask(valid pixel) image associated with each source image isaed into a low-
pass (Gaussian) pyramid. These blurred and subsampled mestme the weights used to per-
form a per-level feathered blend of the band-pass sourcgama

Finally, the composite image is reconstructed by intefpadgand summing all of the pyramid
levels (band-pass images). The result of applying thismiddlending is shown in Figure ?.

Gradient domain blending. An alternative approach to image blending is to perform thera-
tions in thegradient domainReconstructing images from their gradient fields has a hostgry in
computer vision (Horn 1986), starting originally with warkbrightness constancy (Horn 1974),
shape from shading (Horn and Brooks 1989), and photomégres (Woodham 1981). More
recently, related ideas have been used for reconstructiages from their edges (Elder and Gold-
erg 2001), removing shadows from images (Weiss 2001) tamel mappindiigh dynamic range
images by reducing the magnitude of image edges (gradigratplet al. 2002).

Pérezet al. (2003) showed how a similar approach can be used to do seapiygct inser-
tion in image editing applications. Rather than copyingetsx thegradientsof the new image
fragment are copied instead. The actual pixel values foctiged image are then computed by
solving aPoisson equationhat locally matches the gradients while obeying the fikedchlet
(exact matching) conditions at the seam boundary. Ré&rak (2003) show that this is equivalent
to computing an additivenembranenterpolant of the mismatch between the source and destina-
tion images along the boundary. (The membrane interpagakiiown to have nicer interpolation
properties for arbitrary-shaped constraints than frequetomain interpolants (Nielson 1993).) In
prior work, Peleg (1981) also proposed adding a smooth ilmméd force a consistency along the
seam curve.

Agarwalaet al. (2004) extended this idea to a multi-source formulationgrghit no longer
makes sense to talk of a destination image whose exact @kety must be matched at the seam.
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Instead,eachsource image contributes its own gradient field, and thesBaigquation is solved
usingNeumanrboundary conditions, i.e., dropping any equations thatlirespixels outside the
boundary of the image.

Rather than solving the Poisson partial differential eiguat Agarwalaet al. (2004) directly
minimizevariational problem

: . T 2
min [VC(@) = Vi@ ()] (117)

The discretized form of this equation is a set of gradienst@mnt equations

Clx+i)—Clx) = Im(x+i)— Lay(x) and (118)
Clx+))—Clx) = Ia(x+3)) — L (z), (119)

wherez = (1,0) andj = (0, 1) are unit vectors in the andy directions?®* They then solve the

associated sparse least squares problem. Since this sysuations is only defined up to an
additive constraint, Agarwalet al. (2004) ask the user to select the value of one pixel. In practi
a better choice might be to weakly bias the solution towaegsaducing the original color values.

In order to accelerate the solution of this sparse lineaesys(Fattalet al. 2002) use multi-
grid, whereas (Agarwalat al. 2004) have recently been using hierarchical basis pretiondd
conjugate gradient descent (Szeliski 1990). The resuiagn blending work very well in practice
(Figure 3h), although care must be taken when copying largéignt values near seams so that a
“double edge” is not introduced.

Copying gradients directly from the source images aftemspcement is just one approach
to gradient domain blending. The paper by Legtral. (2004) examines several different variants
on this approach, which they c&lradient-domain Image STitchif&IST). The techniques they
examine include feathering (blending) the gradients fraemgource images, as well as using an
L1 norm in performing the reconstruction of the image frora gradient field, rather than using
an L2 norm as in (117). Their preferred technique is the Linagation of a feathered (blended)
cost function on the original image gradients (which thely G&ST1-/;). While L1 optimization
using linear programming can be slow, a faster iterativeiaredased algorithm in a multigrid
framework works well in practice. Visual comparisons bedwéheir preferred approach and what
they calloptimal seam on the gradientshich is equivalent to Agarwalet al. (2004)’s approach)
show similar results, while significantly improving on pgral blending and feathering algorithms.

Exposure compensation. Pyramid and gradient domain blending can do a good job of eomp
sating for moderate amounts of exposure differences betiwesyes. However, when the exposure
differences become large, alternative approaches maydessay.

23At seam locations, the right hand side is replaced by theageeof the gradients in the two source images.
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Uyttendaeleet al. (2001) iteratively estimate a local correction betweerhesmurce image
and a blended composite. First, a block-based quadratisfeafunction is fitted between each
source image and an initial feathered composite. Nextstearfunctions are averaged with their
neighbors to get a smoother mapping, and per-pixel trafgf@tions are computed kbgplining
between neighboring block values. Once each source imagbden smoothly adjusted, a new
feathered composite is computed, and the process is betedp@gpically 3 times). The results
in (Uyttendaelest al. 2001) demonstrate that this does a better job of exposurp&oasation than
simple feathering, and can handle local variations in edpodue to effects like lens vignetting.

High dynamic range imaging. A more principled approach is to estimate a sifgtgh dynamic
range (HDR) radiance map from of the differently exposed imagesariMand Picard 1995, De-
bevec and Malik 1997, Mitsunaga and Nayar 1999). All of theapers assume that the input
images were taken with a fixed camera whose pixel values

Ix(x) = f(cxR(z); p) (120)

are the result of applying a parameterizediometric transfer functiory (R, p) to scaled radi-
ance valueg, R(x). The exposure values are either known (by experimental setup, or from a
camera’s EXIF tags), or are computed as part of the fittinggss.

The form of the parametric function differs in each of theapgrs. Mann and Picard (1995)
use athree-parameté(R) = o + GR" function, Debevec and Malik (1997) use a thin-plate cubic
spline, while Mitsunaga and Nayar (1999) use a low-ordér{ 10) polynomial for theinverseof
the transfer function.

To blend the estimated (noisy) radiance values into a finalpmsite, Mann and Picard (1995)
use a hat function (accentuating mid-tone pixels), DebawnecMalik (1997) use the derivative of
the response function, while Mitsunaga and Nayar (1999)rope the signal-to-noise ratio (SNR),
which emphasizes both higher pixel values and larger gnélia the transfer function.

Once a radiance map has been computed, it is usually negésshsplay it on a lower gamut
(i.e., 8-bit) screen or printer. A variety 6dne mappindechniques have been developed for this
purpose, which involve either computing spatially varyingnsfer functions or reducing image
gradients to fit the the available dynamic range (Fagtahl. 2002, Durand and Dorsey 2002,
Reinhardet al. 2002)

Unfortunately, most casually acquired images may not biegity registered and may contain
moving objects. Kangt al. (2003) present an algorithm that combines global registratith
local motion estimation (optic flow) to accurately align ineages before blending their radiance
estimates. Since the images may have widely different expsscare must be taken when produc-
ing the motion estimates, which must themselves be chedtambhsistency to avoid the creation
of ghosts and object fragments.
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Even this approach, however, may not work when the camernmigtaneously undergoing
large panning motions and exposure changes, which is a carpwurrence in casually acquired
panoramas. Under such conditions, different parts of ttegygammay be seen at one or more expo-
sures. Devising a method to blend all of these differentsmievhile avoiding sharp transitions
and dealing with scene motion is a challenging open resgauntiiem.

In the long term, the need to compute high dynamic range isyigen multiple exposures may
be eliminated by advances in camera sensor technology (NaygbMitsunaga 2000). However,
the need to blend such images and to tone map them to a pldesihgesult will likely remain.

7 Extensions and open issues

Multiple resolutions (zoom) and super-resolution (Kee¢ral. 1988, Irani and Peleg 1991, Cheese-
manet al. 1993, Mann and Picard 1994, Chiang and Boult 1996, Bastictd. 1996, Capel and
Zisserman 1998, Capel and Zisserman 2000, Capel and Ziss@®91, Smelyanskigt al.2000).

Video stitching (Irani and Anandan 1998); adding tempolaments (Sarnoff’'s mosaics with
video (Lamplight?)); VideoBrush (Sawhney al. 1998); see also Salient Stills (Teodosio and
Bender 1993)) or (Massey & Bender, IBM Systems Journal 1996)

Peleg’s manifold mosaics (Peleg al. 2000) and stereo mosaics (where)? Strip mosaics for
artistic rendering and multi-plane pan (Woedl al. 1997). Multi-center-of-projection images
(Rademacher and Bishop 1998).

3-D parallax (Kumaet al. 1995).

Concentric mosaics (Shum and He 1999, Shum and Szeliski 19@9al. 2004b).

Other applications: document scanning with a mouse (Nakab. 1998); retinal image mo-
saics (Caret al.2002).

Open issues. How to really make these things work automatically: repegtattern, matching
subsets, moving objects, parallax. Hard to get the last 3Mention internal test data suite,
shipping in product.)

Automated object removal: like intelligent PhotoMontagerfiantic stitching, photographer’s
assistant)

Large parallax: need to do 3D reconstruction. But, not fmdssi no overlap in some regions
(MPPS gets around this with a hack). Ideally, want 70% operdie inter-frame motions strongly
together (also for better blending). Video-rate camerals @n-board stitching may some day solve
this...
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