High Dynamic Range Images

15-463: Rendering and Image Processing
Alexei Efros

The Grandma Problem




Problem: Dynamic Range

The real world is
high dynamic range.
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Camera Calibration

e Geometric

— How pixel coordinates relate to directions in the
world
e Photometric

— How pixel values relate to radiance amounts in
the world

Lens Shutter Film
scene sensor J‘ sensor latent
radiance irradiance exposure image
At

W/sr/m

Electronic Camera =y

The Image
Acquisition Pipeline




Development Remapping

CCD ADC
film analog digital pixel
density voltages values values

Imaging system response function

log Exposure = log (Radiance * At)
(CCD photon count)




Varying Exposure

-

S .

Camera 1s not a photometer!

e Limited dynamic range
— Perhaps use multiple exposures?
e Unknown, nonlinear response

— Not possible to convert pixel values to
radiance

o Solution:

— Recover response curve from multiple
exposures, then reconstruct the radiance map




Recovering High Dynamic Range
Radiance Maps from Photographs

Paul Debevec
| Jitendra Malik
Computer Science Division

University of California at Berkeley

August 1997

Ways to vary exposure
Shutter Speed (*)

F/stop (aperture, iris)

Neutral Density (ND) Filters
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Shutter Speed

Ranges: Canon D30: 30 to 1/4,000 sec.
Sony VX2000: %4 to 1/10,000 sec.

Directly varies the exposure
Usually accurate and repeatable
Issues:

Noise in long exposures

Shutter Speed

Note: shutter times usually obey a power
series — each “stop” is a factor of 2

14, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000
sec

Usually really is:

14, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024
Sec




The Algorithm

Image series

VR E

At = At = At = TAt=
1/64 sec 1/16 sec 1/4 sec 1 sec

Pixel Value Z = f(Exposure)
Exposure = Radiance x At

log Exposure = log Radiance + log At

Response Curve

Assuming unit radiance After adjusting radiances to
for each pixel obtain a smooth response

Pixel value

In Exposure In Exposure




The Math

» Let g(z) be the discrete inverse response function

» For each pixel site i in each image j, want:

In Radiance+InAt, = g(Z,)

» Solve the overdetermined linear system:

N P Z g
ZZ[ln Radiance+1nAt; — g(Z,, )T +A ; g”(z)2

i=l j=1

%—JH_J

fitting term smoothness term

Matlab
Code

>lude the data-fittin

e system using SVD
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Results: Digital Camera

Kodak DCS460
Recovered response

curve

Pixel value

log Exposure

Reconstructed radiance map
N—
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Results: Color Film
« Kodak Gold ASA 100, PhotoCD

Recovered Response Curves

Green
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The
Radiance
Map

121,741
3.869

The
Radiance
Map

Linearly scaled to
display device
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Portable FloatMap (.pfm)

* 12 bytes per pixel, 4 for each channel

sign exponent mantissa

Text header similar to Jeff Poskanzer’s .ppm
image format: PF

768 512
1

<binary image data>

Floating Point TIFF similar

Radiance Format
(.pic, .hdr)

32 bits / pixel

ENEEEEEE
Green Blue Exponent

(145, 215, 87, 149) = (145, 215, 87, 103) =
(145, 215, 87) * 27(149-128) = (145, 215, 87) * 27(103-128) =

1760000: 713000 0.00000641 0.00000259

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994




ILM’s OpenEXR (.exr)

* 6 bytes per pixel, 2 for each channel, compressed

sign exponent mantissa

« Several lossless compression options, 2:1 typical
« Compatible with the “half” datatype in NVidia's Cg
» Supported natively on GeForce FX and Quadro FX

 Available at http://www.openexr.net/

W/sr/m2
121.741
28.869
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Tone Mapping

e How can we do this?

Linear scaling?, thresholding? Suggestions?

High dynamic range
I
L

0 to 255

Real World
Ray Traced
World (Radiance)

Display/
Printer

Simple Global Operator

* Compression curve needs to

— Bring everything within range
— Leave dark areas alone

e In other words

— Asymptote at 255
— Derivative of 1 at 0
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Global Operator (Reinhart et al)

L

world

display — 1+ L

'world
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Reinhart Operator Darkest 0.1% scaled
to display device

What do we see?
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What does the eye sees?

Luminance |

Range of
B .

AW 1 1 iﬁ

TTITTCTTO™ Poor actity

The eye has a huge dynamic range
Do we see a true radiance map?

Eye 1s not a photometer!

o "Every light is a shade, compared to the
higher lights, till you come to the sun; and
every shade is a light, compared to the
deeper shades, till you come to the night."

— John Ruskin, 1879
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Cornsweet Illusion

Sine wave

- B (IS

Campbell-Robson contrast sensitivity curve
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Metamores

Craik- O’ Brien Cornsweet Effect

Actual Luminance Profile Perceived Luminance Profile

Can we use this for range compression?

Compressing Dynamic Range
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Fast Bilateral Filtering
for the Display of
High-Dynamic-Range Images

Frédo Durand & Julie Dorsey
Laboratory for Computer Science
Massachusetts Institute of Technology

High-dynamic-range (HDR) images

!

e CG Images

e Multiple exposure photo [Debevec & Malik

Q00 R
t Recover \ IypR value
i i " 1 response for each pixel
S < curve
e HDR sensors -
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A typical photo

e Sun is overexposed

e Foreground is underexposed

Gamma compression

e X —> XY
e Colors are washed-out

Input Gamma
g .
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Gamma compression on intensity

e Colors are OK,
but details (intensity high-frequency) are blurred

Intensity || Gamma on intensity

Chiu et al. 1993

* Reduce contrast of low-frequencies
e Keep high frequencies

Low-freq. Reduce low frequency

High-freq.
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The halo nightmare

e For strong edges

* Because they contain high frequency

Low-freq. Reduce low frequency

Our approach

e Do not blur across edges
e Non-linear filtering

Large-scale

Detail
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Multiscale decomposition
e Multiscale retinex [Jobson et al. 1997]

& 9 ] . } B
Low-freq. Mid-freq. | EMi req. 2 EHigh-freq.

Compressed Compressed Compressed

Edge-preserving filtering

e Blur, but not across edges

Input T Gaussian blur Edge-preserving

* Anisotropic diffusion [Perona & Malik 90]

— Blurring as heat flow
— LCIS [Tumblin & Turk]

e Bilateral filtering [Tomasi & Manduci, 98]




Comparison with our approach

* We use only 2 scales
e Can be seen as illumination and reflectance
 Different edge-preserving filter from LCIS

Large-scale Detail

Compressed

Start with Gaussian filtering

e Here, input is a step function + noise
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Start with Gaussian filtering

e Spatial Gaussian f
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* Output is blurred
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Gaussian filter as weighted average

* Weight of & depends on distance to x

f(x.8)
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The problem of edges

e Here, I(£) “pollutes” our estimate J(x)
e It is too different
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Principle of Bilateral filtering

e [Tomasi and Manduchi 1998]

e Penalty g on the intensity difference

g(I(&)—1(x))

Bilateral filtering
e [Tomasi and Manduchi 1998]

e Spatial Gaussian f

er k( 3 Z f(x &) (&) -1(x)
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Bilateral filtering

e [Tomasi and Manduchi 1998]
e Spatial Gaussian f

* Gaussian g on the intensity difference

J(»«)—mZ f(E  gUE)-1(x) (&)

Normalization factor

e [Tomasi and Manduchi 1998

. k(x)= 2 | [ sUE)-1(x)

f(x8)  gU@-1(x)| 1)
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Bilateral filtering is non-linear

e [Tomasi and Manduchi 1998]

* The weights are different for each output pixel

|

~'<x>=m2 f(E  gUE)-1(x) (&)

s

Contrast
too high!
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Contrast reduction

Fast
Bilateral
Filter
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Contrast reduction

Input HDR image

Bilateral f
Filter B

Color

Contrast reduction

Input HDR image

Scale in log domain

Reduce
contrast

Fast
Bilateral
Filter

Color




Contrast reduction

Input HDR image

Reduce
contrast

Fast
Bilateral
Filter

Color

Large scale
Reduce

1 contrast

-
-

Bilateral i”“\
Filter —

Color

. i’.i,_
aled
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Informal comparison

Bilateral
[Durand et al.]

Informal comparison

Bilateral
[Durand et al.]

Photographic
[Reinhard et al.]

Photographic
[Reinhard et al.]
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