Linear image transforms Let's start with a 1-D image (a "signal"): f[i]f[i] =f[i]i A very general and useful class of transforms are the linear transforms of f, defined by a matrix M $\begin{bmatrix} * & * & \cdots & * \\ * & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \cdots & * \end{bmatrix} \begin{bmatrix} * \\ * \\ * \\ \vdots \\ * \end{bmatrix} = \begin{bmatrix} * \\ * \\ \vdots \\ * \end{bmatrix}$ M[i,j] f[i] g[i] $g[i] = \sum_{j=1} M[i, j]f[j]$ 1

Linear shift-invariant filters

*	*	0	0	0	0	0	0
a	b	c	0	0	0	0	0
0	a	b	c	0	0	0	0
0	0	a	b	c	0	0	0
0	0	0	a	b	c	0	0
0	0	0	0	a	b	c	0
0	0	0	0	0	a	b	c
0	0	0	0	0	0	*	*

This pattern is very common

- same entries in each row
- all non-zero entries near the diagonal

It is known as a **linear shift-invariant filter** and is represented by a **kernel** (or **mask**) h:

$$h[i] = \begin{bmatrix} a & b & c \end{bmatrix}$$

and can be written (for kernel of size 2k+1) as:

$$g[i] = \sum_{u=-k}^{-k} h[u]f[i+u]$$

The above allows negative filter indices. When you implement need to use: h[u+k] instead of h[u]

4

2D filtering

A 2D image f[i,j] can be filtered by a 2D kernel h[u,v] to produce an output image g[i,j]:

$$g[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} h[u,v]f[i+u,j+v]$$

This is called a **cross-correlation** operation and written:

$$g = h \otimes f$$

h is called the "filter," "kernel," or "mask."

Noise

Filtering is useful for noise reduction...

Salt and pepper noise

Impulse noise

Gaussian noise

Common types of noise:

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences
 of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Mean filtering

f[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Mean filtering

f[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
$a[r \ u]$	0	30	50	80	80	90	60	30	
$g[\omega, g]$	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

Effect of mean filters

Mean kernel

What's the kernel for a 3x3 mean filter?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[x, y]

When can taking an un weighted mean be bad idea?

Gaussian Filtering

A Gaussian kernel gives less weight to pixels further from the center of the window

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

1	1	2	1
<u> </u>	2	4	2
16	1	2	1

h[u, v]

f[x, y]

This kernel is an approximation of a Gaussian function: $1 \quad u^2 + v^2$

Convolution

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$g[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} h[u,v]f[i-u,j-v]$$

It is written:

$$g = h \star f$$

Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

Unsharp Masking (MATLAB)

```
Imrgb = imread('file.jpg');
```

im = im2double(rgb2gray(imrgb));

g= fspecial('gaussian', 25,4);

```
imblur = conv2(im,g,'same');
```

imagesc([im imblur])

imagesc([im im+.4*(im-imblur)])

logfilt = fspecial('log',25,4);

Median filters

A **Median Filter** operates over a window by selecting the median intensity in the window.

What advantage does a median filter have over a mean filter?

Is a median filter a kind of convolution?

Comparison: salt and pepper noise

Comparison: Gaussian noise

