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Automatic Image Alignment 
via Motion Estimation

15-463: Rendering and Image Processing

Alexei Efros

…with a lot of slides stolen from Steve Seitz

Today

Direct (pixel-based) alignment

• Brute Force Search

• Gradient Search (Motion Estimation)

• Lucas-Kanade

Feature-based alignment

• Interest Points

• SIFT

• Brown & Lowe, “Recognising Panoramas”

Reading:

• Szeliski, Sections 3 and 4
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Image Alignment

How do we align two images automatically?

Two broad approaches:

• Feature-based alignment

– Find a few matching features in both images

– compute alignment

• Direct (pixel-based) alignment

– Search for alignment where most pixels agree

Direct Alignment 

The simplest approach is a brute force search (hw1)
• Need to define image matching function

– SSD, Normalized Correlation, edge matching, etc.

• Search over all parameters within a reasonable range:

e.g. for translation:
for tx=x0:step:x1,

for ty=y0:step:y1,

compare image1(x,y) to image2(x+tx,y+ty)

end;

end;

Need to pick correct x0,x1 and step
• What happens if step is too large?
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Direct Alignment (brute force)

What if we want to search for more complicated 

transformation, e.g. homography?

for a=a0:astep:a1,

for b=b0:bstep:b1,

for c=c0:cstep:c1,

for d=d0:dstep:d1,

for e=e0:estep:e1,

for f=f0:fstep:f1, 

for g=g0:gstep:g1,

for h=h0:hstep:h1,

compare image1 to H(image2)

end; end; end; end; end; end; end; end;
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Problems with brute force

Not realistic
• Search in O(N8) is problematic

• Not clear how to set starting/stopping value and step

What can we do?
• Use pyramid search to limit starting/stopping/step values

• For special cases (rotational panoramas), can reduce search 
slightly to O(N4):

– H = K1R1R2
-1K2

-1         (4 DOF: f and rotation)

Alternative: gradient decent on the error function
• i.e. how do I tweak my current estimate to make the SSD 

error go down?

• Can do sub-pixel accuracy

• BIG assumption?

– Images are already almost aligned (<2 pixels difference!)

– Can improve with pyramid

• Same tool as in motion estimation
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Motion estimation: Optical flow

Will start by estimating motion of each pixel separately

Then will consider motion of entire image 

Why estimate motion?

Lots of uses

• Track object behavior

• Correct for camera jitter (stabilization)

• Align images (mosaics)

• 3D shape reconstruction

• Special effects
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Problem definition:  optical flow

How to estimate pixel motion from image H to image I?

• Solve pixel correspondence problem

– given a pixel in H, look for nearby pixels of the same color in I

Key assumptions

• color constancy:  a point in H looks the same in I

– For grayscale images, this is brightness constancy

• small motion:  points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)

Let’s look at these constraints more closely

• brightness constancy:   Q:  what’s the equation?

• small motion:  (u and v are less than 1 pixel)

– suppose we take the Taylor series expansion of I:
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Optical flow equation

Combining these two equations

In the limit as u and v go to zero, this becomes exact

Optical flow equation

Q:  how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

• The component of the flow in the gradient direction is determined

• The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/barberpole.htm
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Aperture problem

Aperture problem
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Solving the aperture problem

How to get more equations for a pixel?

• Basic idea:  impose additional constraints

– most common is to assume that the flow field is smooth locally

– one method:  pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25 equations per pixel!

RGB version

How to get more equations for a pixel?

• Basic idea:  impose additional constraints

– most common is to assume that the flow field is smooth locally

– one method:  pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25*3 equations per pixel!
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Lukas-Kanade flow

Prob:  we have more equations than unknowns

• The summations are over all pixels in the K x K window

• This technique was first proposed by Lukas & Kanade (1981)

Solution:  solve least squares problem

• minimum least squares solution given by solution (in d) of:

Conditions for solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of ATA should not be too small

• ATA should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue)

ATA is solvable when there is no aperture problem
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Local Patch Analysis

Edge

– large gradients, all the same

– large λ1, small λ2
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Low texture region

– gradients have small magnitude

– small λ1, small λ2

High textured region

– gradients are different, large magnitudes

– large λ1, large λ2
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Observation

This is a two image problem BUT
• Can measure sensitivity by just looking at one of the images!

• This tells us which pixels are easy to track, which are hard

– very useful later on when we do feature tracking...

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

• Suppose ATA is easily invertible

• Suppose there is not much noise in the image

When our assumptions are violated

• Brightness constancy is not satisfied

• The motion is not small

• A point does not move like its neighbors

– window size is too large

– what is the ideal window size?
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Iterative Refinement

Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations

2. Warp H towards I using the estimated flow field

- use image warping techniques

3. Repeat until convergence

Revisiting the small motion assumption

Is this motion small enough?

• Probably not—it’s much larger than one pixel (2nd order terms dominate)

• How might we solve this problem?
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Reduce the resolution!

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation



15

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

Beyond Translation

So far, our patch can only translate in (u,v)

What about other motion models?

• rotation, affine, perspective

Same thing but need to add an appropriate Jacobian (see 

Table 2 in Szeliski handout):
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Image alignment

Goal:  estimate single (u,v) translation for entire image
• Easier subcase:  solvable by pyramid-based Lukas-Kanade 

Lucas-Kanade for image alignment

Pros:

• All pixels get used in matching

• Can get sub-pixel accuracy (important for good mosaicing!)

• Relatively fast and simple

Cons:

• Prone to local minima

• Images need to be already well-aligned ☺

What if, instead, we extract important “features” from 

the image and just align these?
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Feature-based alignment

Choosing Features 

• Choose only the points (“features”) that are salient, i.e. likely 

to be there in the other image

• How to find these features?

– windows where                          has two large eigenvalues

• Called the Harris Corner Detector

1. Find a few important features (aka Interest Points)

2. Match them across two images

3. Compute image transformation as per HW#2

Feature Detection
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Feature Matching

One possibility:

• Match features found in image1 with features found in image2

– e.g. SSD of image patches around each feature

• Use successful matches to estimate homography

– Do something to get rid of outliers 

Problems:

• What if the image patches for several interest points look 

similar?

– Make patch size bigger

• What if the image patches for the same feature look different due 

to scale, rotation, etc.

– Use Lucas-Kanade with affine motion model

– Better solution: Scale-Invariant Feature Transform (SIFT)

Invariant Features

Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, Tuytelaars & Van Gool

2000, Mikolajczyk & Schmid 2001, Brown & Lowe 2002, Matas et. al. 

2002, Schaffalitzky & Zisserman 2002 
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SIFT Features

Invariant Features

• Establish invariant frame

– Find optimal scale

» Maxima/minima of scale-space DOG ⇒ x, y, s

– Find optimal orientation

» Maximum of distribution of local gradients ⇒ θ

• Form descriptor vector

– Histogram of smoothed local gradients

– 128 dimensions

SIFT features are…

• Geometrically invariant to similarity transforms,

– some robustness to affine change

• Photometrically invariant to affine changes in intensity

Example: Recognising Panoramas

M. Brown and D. Lowe, 

University of British Columbia
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Why “Recognising Panoramas”?

Why “Recognising Panoramas”?

1D Rotations (θ)

• Ordering ⇒ matching images
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Why “Recognising Panoramas”?

1D Rotations (θ)

• Ordering ⇒ matching images

Why “Recognising Panoramas”?

1D Rotations (θ)

• Ordering ⇒ matching images
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Why “Recognising Panoramas”?

• 2D Rotations (θ, φ)

– Ordering ⇒ matching images

1D Rotations (θ)

• Ordering ⇒ matching images

Why “Recognising Panoramas”?

1D Rotations (θ)

• Ordering ⇒ matching images

• 2D Rotations (θ, φ)

– Ordering ⇒ matching images
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Why “Recognising Panoramas”?

1D Rotations (θ)

• Ordering ⇒ matching images

• 2D Rotations (θ, φ)

– Ordering ⇒ matching images

Why “Recognising Panoramas”?
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Overview

Feature Matching

Image Matching

Bundle Adjustment

Multi-band Blending

Results

Conclusions

RANSAC for Homography
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RANSAC for Homography

RANSAC for Homography
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Probabilistic model for verification

Finding the panoramas
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Finding the panoramas

Finding the panoramas
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Finding the panoramas

Parameterise each camera by rotation and focal length

This gives pairwise homographies

Homography for Rotation
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Bundle Adjustment

New images initialised with rotation, focal length of best 

matching image

Bundle Adjustment

New images initialised with rotation, focal length of best 

matching image
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Multi-band Blending

Burt & Adelson 1983

• Blend frequency bands over range ∝ λ

Results


