

Images as functions

	What is a digital image?										
	We usually operate on digital (discrete) images: • Sample the 2D space on a regular grid										
	 Quantize each sample (round to nearest integer) 										
	If our samples are Δ apart, we can write this as:										
	$f[i, j] = $ Quantize{ $f(i \Delta, j \Delta)$ }										
	The image can now be represented as a matrix										
	of integer values										
		62	79	23	119	120	105	4	0		
	i	10	10	9	62	12	78	34	0		
		10	58	197	46	46	0	0	48		
		176	135	5	188	191	68	0	49 77		
		2	89	144	29 147	26 187	37 102	0 62	208		
		255	252	0	166	123	62	0	31		
		166	63	127	17	1	0	99	30		

Image processing

An **image processing** operation typically defines a new image *g* in terms of an existing image *f*. We can transform either the range of *f*.

$$g(x,y) = t(f(x,y))$$

Or the domain of f:

$$g(x,y) = f(t_x(x,y), t_y(x,y))$$

What kinds of operations can each perform?

Point Processing

The simplest kind of range transformations are these independent of position x,y:

g = t(f)

This is called point processing.

What can they do? What's the form of *t*?

Important: every pixel for himself – spatial information completely lost!

