Image Processing I

15-463: Rendering and Image
Processing
Alexei Efros
...with most slides shamelessly stolen from Steve Seitz and Gonzalez \& Woods

Today

Image Formation
Range Transformations

- Point Processing

Programming Assignment \#1 OUT

Reading for this week:

- Gonzalez \& Woods, Ch. 3
- Forsyth \& Ponce, Ch. 7

Image Formation

a b de
FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.
$f(x, y)=$ reflectance (x, y) *illumination (x, y)
Reflectance in [0,1], illumination in [0,inf]

Sampling and Quantization

,
FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image. used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Sampling and Quantization

a b
FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

What is an image?

We can think of an image as a function, f, from R^{2} to R:

- $f(x, y)$ gives the intensity at position (x, y)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:
$-f:[a, b] \times[c, d] \rightarrow[0,1]$

A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$
f(x, y)=\left[\begin{array}{l}
r(x, y) \\
g(x, y) \\
b(x, y)
\end{array}\right]
$$

Images as functions

What is a digital image?

We usually operate on digital (discrete) images:

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

If our samples are Δ apart, we can write this as:
$f i, j]=$ Quantize $\{f(i \Delta, j \Delta)\}$
The image can now be represented as a matrix of inteaer values

$\dot{\mathbf{z}}$	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Image processing

An image processing operation typically defines a new image g in terms of an existing image f. We can transform either the range of f.

$$
g(x, y)=t(f(x, y))
$$

Or the domain of f :

$$
g(x, y)=f\left(t_{x}(x, y), t_{y}(x, y)\right)
$$

What kinds of operations can each perform?

Point Processing

The simplest kind of range transformations are these independent of position x, y :

$$
g=t(f)
$$

This is called point processing.

What can they do?
What's the form of t ?

Important: every pixel for himself - spatial information completely lost!

Basic Point Processing

FIGURE 3.3 Some
basic gray-level
transformation
functions used for
enhancement.

Negative

Log

a b
FIGURE 3.5
(a) Fourier
spectrum.
(b) Result
applying the log
transformation
transform
given in
Eq. (3.2-2) with
$c=1$.

Power-law transformations

of the equation
of the equatio
$s=c r^{\gamma}$ for
$s=c r^{\gamma}$ for
various values of
various values o
$\gamma(c=1$ in all
cases).

Gamma Correction

Gamma Measuring Applet:
http://www.cs.berkeley.edu/~efros/java/gamma/gamma.html

Image Enhancement

a b
c d
FIGURE 3.9
(a) Aerial image.
(b)-(d) Results of
applying the
transformation in
Eq. (3.2-3) with
$c=1$ and
$\gamma=3.0,4.0$, and
5.0, respectively.
(Original image
for this example
courtesy of
NASA.)

Contrast Streching

Image Histograms

a b
FIGURE 3.15 Four basic image types. dark, light, low con trast, high contrast, and their corof Biological Sciences, Australian National University, Canberra, Australia.)

Cumulative Histograms

FIGURE 3.18
Transformation
functions (1)
obtained from the
histograms of the
images in
Fig.3.17(a), using
Eq. (3.3-8).

Histogram Equalization

Histogram Matching

a b
FIGURE 3.19
(a) Graphical
(a) Graphical
interpretation of
mapping from r_{k}
mapping from r_{k}
(b) Mapping of z_{q}
(b) Mapping of z_{q}
to its
corresponding
value v_{q} via $G(z)$.
(c) Inverse
mapping from s_{k}
o its
corresponding
value of z_{k}

Match-histogram code

```
Match-histogram (im1,im2)
    im1-cdf = Make-cdf (im1)
    im2-cdf = Make-cdf(im2)
    inv-im2-cdf = Make-inverse-lookup-table(im2-cdf)
    Loop for each pixel do
        im1[pixel] =
            Lookup(inv-im2-cdf
            Lookup(im1-cdf,im1[pixel]))
```


Neighborhood Processing (filtering)

Q: What happens if I reshuffle all pixels within the image?

A: It's histogram won't change. No point processing will be affected...

Need spatial information to capture this.

Programming Assignment \#1

Easy stuff to get you started with Matlab

- James will hold tutorial this week

Distance Functions

- SSD
- Normalized Correlation

Bells and Whistles

- Point Processing (color?)
- Neighborhood Processing
- Using your data (3 copies!)
- Using your data (other images)

