Panoramas and Calibration

15-463: Rendering and Image Processing

> Alexei Efros
...with a lot of slides stolen from Steve
Seitz and Rick Szeliski

Why Mosaic?

Are you getting the whole picture?

- Compact Camera FOV $=50 \times 35^{\circ}$

Why Mosaic?

Are you getting the whole picture?

- Compact Camera FOV $=50 \times 35^{\circ}$
- Human FOV $=200 \times 135^{\circ}$

Why Mosaic?

Are you getting the whole picture?

- Compact Camera FOV $=50 \times 35^{\circ}$
- Human FOV

$$
=200 \times 135^{\circ}
$$

- Panoramic Mosaic $=360 \times 180^{\circ}$

Mosaic as Image Reprojection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera
- Max FOV?

Panoramas

What if you want a 360° field of view?

Cylindrical projection

- Map 3D point (X,Y,Z) onto cylinder

$$
(\hat{x}, \hat{y}, \tilde{z})=\frac{1}{\sqrt{X^{2}+Z^{2}}}(X, Y, Z)
$$

unwrapped cylinder

- Convert to cylindrical coordinates

$$
(\sin \theta, h, \cos \theta)=(\hat{x}, \hat{y}, \tilde{z})
$$

- Convert to cylindrical image coordinates

$$
(\tilde{x}, \tilde{y})=(f \theta, f h)+\left(\widetilde{x}_{c}, \tilde{y}_{c}\right)
$$

unit cylinder

Cylindrical reprojection

How to map from a cylinder to a planar image?

side view

top-down view

- Apply camera projection matrix
- $w=$ image width, $h=$ image height
$\left[\begin{array}{c}w x^{\prime} \\ w y^{\prime} \\ w\end{array}\right]=\left[\begin{array}{cccc}-f & 0 & w / 2 & 0 \\ 0 & -f & h / 2 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}\hat{x} \\ \bar{y} \\ \bar{z} \\ 1\end{array}\right]$
- Convert to image coordinates
- divide by third coordinate (w)

Cylindrical panoramas

Steps

- Reproject each image onto a cylinder
- Blend
- Output the resulting mosaic

What are the assumptions here?

Cylindrical image stitching

What if you don't know the camera rotation?

- Solve for the camera rotations
- Note that a rotation of the camera is a translation of the cylinder!

Full-view Panorama

Different projections are possible

Cylindrical reprojection

What's your focal length, buddy?

Focal length is (highly!) camera dependant

- Can get a rough estimate by measuring FOV:

- Can use the EXIF data tag (might not give the right thing)
- Can use several images together and try to find f that would make them match
- Can use a known 3D object and its projection to solve for f
- Etc.

There are other camera parameters too:

- Optical center, non-square pixels, lens distortion, etc.

Camera calibration

Determine camera parameters from known 3D points or calibration object(s)

1. internal or intrinsic parameters such as focal length, optical center, aspect ratio: what kind of camera?
2. external or extrinsic (pose) parameters:
where is the camera in the world coordinates?

- World coordinates make sense for multiple cameras / multiple images

How can we do this?

Approach 1: solve for projection matrix

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image

$$
\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Direct linear calibration

$$
\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Solve for Projection Matrix Π using least-squares (just like in homework)

Advantages:

- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the image

Disadvantages:

- Doesn't tell us about particular parameters
- Mixes up internal and external parameters
- pose specific: move the camera and everything breaks

Approach 2: solve for parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point ($x^{\prime}, y_{c}^{\prime}$), pixel size (s_{x}, s_{y})
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{X}=\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{X}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations identity matrix

$$
\left.\begin{array}{c}
\boldsymbol{\Pi}=\left[\begin{array}{ccc}
-f s_{x} & 0 & x_{c}^{\prime} \\
0 & -f s_{y} & y_{c}^{\prime} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
\text { intrinsics }
\end{array} \underset{\text { projection }}{\mathbf{R}_{3 \times 3}} \begin{array}{cc}
\mathbf{R}_{3 \times 1} & \mathbf{0}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right] \underset{\text { rotation }}{\text { translation }}\left[\begin{array}{cc}
\mathbf{1}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]
$$

- Solve using non-linear optimization

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Distortion

Radial distortion

Correct for "bending" in wide field of view lenses

$$
\begin{aligned}
\widehat{r}^{2} & =\widehat{x}^{2}+\widehat{y}^{2} \\
\widehat{x}^{\prime} & =\widehat{x} /\left(1+\kappa_{1} \widehat{r}^{2}+\kappa_{2} \widehat{r}^{4}\right) \\
\widehat{y}^{\prime} & =\widehat{y} /\left(1+\kappa_{1} \widehat{r}^{2}+\kappa_{2} \widehat{r}^{4}\right) \\
x & =f \widehat{x}^{\prime} / \widehat{z}+x_{c} \\
y & =f \widehat{y}^{\prime} / \widehat{z}+y_{c}
\end{aligned}
$$

Use this instead of normal projection

Multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
- Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/
- Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bougueti/calib doc/index.html
- Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/

Homography revisited

$x=\Pi X$

$$
\begin{gathered}
\boldsymbol{\Pi}=\left[\begin{array}{ccc}
-f s_{x} & 0 & x_{c}^{\prime} \\
0 & -f s_{y} & y_{c}^{\prime} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R}_{3 \times 3} & \mathbf{0}_{3,17} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I}_{3,13} & \mathbf{T}_{3,1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right] \\
\mathrm{K} \\
\mathbf{P}
\end{gathered}
$$

$$
\begin{aligned}
& x=\mathrm{PRT} X \quad X \sim \mathrm{~T}^{-1} \mathrm{R}^{-1} \mathrm{P}^{-1} x \\
& x_{1}=\mathrm{P}_{1} \mathrm{R}_{1} \mathrm{~T}_{1} \mathrm{~T}_{2}{ }^{-1} \mathrm{R}_{2}^{-1} \mathrm{P}_{2}^{-1} x_{2}=\mathrm{M} x_{2}
\end{aligned}
$$

M is 4×4 but if all points X are on a plane, we can drop the last row and get our homography matrix H :

$$
x_{1} \sim \mathrm{H} x_{2}
$$

Now, if the camera only rotates (no translation):

$$
\mathrm{H}=\mathrm{K}_{1} \mathrm{R}_{1} \mathrm{R}_{2}{ }^{-1} \mathrm{~K}_{2}^{-1}
$$

Therefore, our homography has only 3,4 or 5 DOF, depending if focal length is known, same, or different.

- This makes image registration much better behaved

Image registration

How do we determine alignment between images?

- Direct (pixel-based) alignment
- One possibility: block matching (correlation), i.e., find minimum squared error

$$
\begin{gathered}
\left.E(u, v)=\sum_{(x, y)} I_{1}(x+u, y+v)-I_{0}(x, y)\right]^{2}
\end{gathered}
$$

- Another possibility: Fourier-domain correlation [Brown'92]
- But have to be more clever when more DOF are needed

Image registration

How do we determine alignment between images?

- Feature-based Alignment
- Match features between images and use as correspondences
- But matching is tricky:
- Features look like each other
- Features don't look like themselves when transformed

