Panoramas and Calibration

15-463: Rendering and Image Processing
Alexei Efros

…with a lot of slides stolen from Steve Seitz and Rick Szeliski

Why Mosaic?
Are you getting the whole picture?
- Compact Camera FOV = 50 x 35°
Why Mosaic?

Are you getting the whole picture?

- Compact Camera FOV = 50 x 35°
- Human FOV = 200 x 135°

Slide from Brown & Lowe

Why Mosaic?

Are you getting the whole picture?

- Compact Camera FOV = 50 x 35°
- Human FOV = 200 x 135°
- Panoramic Mosaic = 360 x 180°

Slide from Brown & Lowe
Mosaic as Image Reprojection

The mosaic has a natural interpretation in 3D
- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a *synthetic wide-angle camera*
- *Max FOV?*

Panoramas

What if you want a 360° field of view?
Cylindrical projection

- Map 3D point \((X,Y,Z)\) onto cylinder
 \[
 (\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Z^2}}(X,Y,Z)
 \]
- Convert to cylindrical coordinates
 \[
 (\sin \theta, \cos \theta) = (\hat{x}, \hat{y}, \hat{z})
 \]
- Convert to cylindrical image coordinates
 \[
 (\tilde{x}, \tilde{y}) = (f \theta, fh) + (\tilde{x}_c, \tilde{y}_c)
 \]

Cylindrical reprojection

How to map from a cylinder to a planar image?

- Apply camera projection matrix
 \[
 \begin{bmatrix}
 w x' \\
 w y' \\
 w
 \end{bmatrix} =
 \begin{bmatrix}
 -f & 0 & w/2 & 0 \\
 0 & -f & h/2 & 0 \\
 0 & 0 & 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 \hat{x} \\
 \hat{y} \\
 \hat{z} \\
 1
 \end{bmatrix}
 \]
- Convert to image coordinates
 - divide by third coordinate \((w)\)
Cylindrical panoramas

Steps
• Reproject each image onto a cylinder
• Blend
• Output the resulting mosaic

What are the assumptions here?

Cylindrical image stitching

What if you don’t know the camera rotation?
• Solve for the camera rotations
 – Note that a rotation of the camera is a translation of the cylinder!
Full-view Panorama

Different projections are possible
Cylindrical reprojection

Focal length – the dirty secret…

What’s your focal length, buddy?

Focal length is (highly!) camera dependant
- Can get a rough estimate by measuring FOV:

 ![Diagram of focal length calculation]

- Can use the EXIF data tag (might not give the right thing)
- Can use several images together and try to find f that would make them match
- Can use a known 3D object and its projection to solve for f
- Etc.

There are other camera parameters too:
- Optical center, non-square pixels, lens distortion, etc.
Camera calibration

Determine camera parameters from known 3D points or calibration object(s)

1. *internal* or *intrinsic* parameters such as focal length, optical center, aspect ratio:
 what kind of camera?

2. *external* or *extrinsic* (pose) parameters:
 where is the camera in the world coordinates?
 - World coordinates make sense for multiple cameras / multiple images

How can we do this?

Approach 1: solve for projection matrix

Place a known object in the scene
- identify correspondence between image and scene
- compute mapping from scene to image

\[
\begin{bmatrix}
 u_i \\
 v_i \\
 1
\end{bmatrix} =
\begin{bmatrix}
 m_{00} & m_{01} & m_{02} & m_{03} \\
 m_{10} & m_{11} & m_{12} & m_{13} \\
 m_{20} & m_{21} & m_{22} & m_{23}
\end{bmatrix}
\begin{bmatrix}
 X_i \\
 Y_i \\
 Z_i \\
 1
\end{bmatrix}
\]
Direct linear calibration

\[
\begin{bmatrix}
 u_i \\
 v_i \\
 1
\end{bmatrix}
\] \rightarrow
\begin{bmatrix}
 m_{00} & m_{01} & m_{02} & m_{03} \\
 m_{10} & m_{11} & m_{12} & m_{13} \\
 m_{20} & m_{21} & m_{22} & m_{23}
\end{bmatrix}
\begin{bmatrix}
 X_i \\
 Y_i \\
 Z_i \\
 1
\end{bmatrix}
\]

Solve for Projection Matrix \(\Pi \) using least-squares (just like in homework)

Advantages:
- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the image

Disadvantages:
- Doesn’t tell us about particular parameters
- Mixes up internal and external parameters
 - pose specific: move the camera and everything breaks

Approach 2: solve for parameters

A camera is described by several parameters
- Translation \(T \) of the optical center from the origin of world coords
- Rotation \(R \) of the image plane
- focal length \(f \), principle point \((x'_c, y'_c)\), pixel size \((s_x, s_y)\)
- blue parameters are called “extrinsics,” red are “intrinsics”

Projection equation

\[
\begin{bmatrix}
 x' \\
 y' \\
 s
\end{bmatrix}
= \Pi
\begin{bmatrix}
 X \\
 Y \\
 Z \\
 1
\end{bmatrix}
\]

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

\[
\Pi = \begin{bmatrix}
 -f_s & 0 & x'_c & 1 \\
 0 & -f_s & y'_c & 1 \\
 0 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
 R_{3x3} & 0_{3x1} \\
 0_{1x3} & 1 & I_{1x1}
\end{bmatrix}
\]

- intrinsics
- projection
- rotation
- translation

- Solve using non-linear optimization
Distortion

Radial distortion of the image
- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens
Radial distortion

Correct for “bending” in wide field of view lenses

\[r^2 = \hat{x}^2 + \hat{y}^2 \]
\[\hat{x}' = \hat{x} / (1 + \kappa_1 r^2 + \kappa_2 r^4) \]
\[\hat{y}' = \hat{y} / (1 + \kappa_1 r^2 + \kappa_2 r^4) \]
\[x = f \hat{x}' / \hat{z} + x_c \]
\[y = f \hat{y}' / \hat{z} + y_c \]

Use this instead of normal projection

Multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don’t have to know positions/orientations
- Good code available online!
Homography revisited

\[x = \Pi X \]

\[\Pi = \begin{bmatrix} -f_s & 0 & x_c & 1 \\ 0 & -f_s & y_c & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R_{3 \times 3} & 0_{3 \times 1} \\ 0_{3 \times 3} & 1 \end{bmatrix} \begin{bmatrix} I_{3 \times 3} \\ 0_{3 \times 1} \end{bmatrix} \]

\[x = PRTX \quad X \sim T^{-1}R^{-1}P^{-1}x \]

\[x_f = P_1R_1T_1T_2^{-1}R_2^{-1}P_2^{-1}x_2 = Mx_2 \]

M is 4x4 but if all points X are on a plane, we can drop the last row and get our homography matrix H:

\[x_f \sim Hx_2 \]

Now, if the camera only rotates (no translation):

\[H = K_1R_1R_2^{-1}K_2^{-1} \]

Therefore, our homography has only 3, 4 or 5 DOF, depending if focal length is known, same, or different.

- This makes image registration much better behaved

Image registration

How do we determine alignment between images?

- Direct (pixel-based) alignment
- One possibility: block matching (correlation), i.e., find minimum squared error

\[E(u,v) = \sum_{(x,y)} [I_1(x+u, y+v) - I_0(x, y)]^2 \]

- Another possibility: Fourier-domain correlation [Brown'92]
- But have to be more clever when more DOF are needed
Image registration

How do we determine alignment between images?

- Feature-based Alignment
- Match features between images and use as correspondences
- But matching is tricky:
 - Features look like each other
 - Features don't look like themselves when transformed