Panoramas and Calibration

15-463: Rendering and Image Processing
Alexei Efros

...with a lot of slides stolen from Steve
Seitz and Rick Szeliski

Why Mosaic?

Are you getting the whole picture?
» Compact Camera FOV =50 x 35°

Slide from Brown & Lowe

Why Mosaic?

Are you getting the whole picture?
» Compact Camera FOV =50 x 35°
* Human FOV =200 x 135°

Slide from Brown & Lowe

Why Mosaic?

Are you getting the whole picture?
» Compact Camera FOV =50 x 35°
* Human FOV =200x 135°
» Panoramic Mosaic =360x 180°

Slide from Brown & Lowe

Mosaic as Image Reprojection

N mosaic PP
The mosaic has a natural interpretation in 3D
» The images are reprojected onto a common plane
» The mosaic is formed on this plane
» Mosaic is a synthetic wide-angle camera
* Max FOV?

Panoramas

What if you want a 360° field of view?

\ mosaic Projection Cylinder

Cylindrical projection

(X.Y,2)

» Map 3D point (X,Y,Z) onto cylinder

(9.9 = 77-5(X.Y. 2)

» Convert to cylindrical coordinates
(sind, h, cost) = (2,9.%)

» Convert to cylindrical image coordinates

unit cylinder
l (Z.§) = (f0. fh) + (Fe i)
h
(&, Ge) 0
unwrapped cylinder ﬂ

T cylindrical image

Cylindrical reprojection

How to map from a cylinder to a planar image?

» Apply camera projection matrix
— w =image width, h =image height

wa! —f 0 w/2 0 IA
wy | =] 0 —f h/2 O g
w 0 O 1 0 1

+ Convert to image coordinates
— divide by third coordinate (w)

/
— 7

yI i

top-down view image coords

Cylindrical panoramas

Steps
* Reproject each image onto a cylinder
» Blend
» Output the resulting mosaic

What are the assumptions here?

Cylindrical image stitching

What if you don’t know the camera rotation?

» Solve for the camera rotations
— Note that a rotation of the camera is a translation of the cylinder!

Full-view Panorama

Different projections are possible

Cylindrical reprojection

Image 384x300 f = 180 (pixels) f=280 f=2380

What’s your focal length, buddy?

Focal length is (highly!) camera dependant
» Can get a rough estimate by measuring FOV:

w2

« Can use the EXIF data tag (might not give the right thing)

» Can use several images together and try to find f that would
make them match

» Can use a known 3D object and its projection to solve for f
» Etc.

There are other camera parameters too:
» Optical center, non-square pixels, lens distortion, etc.

62 S

Camera calibration

Determine camera parameters from known 3D points or
calibration object(s)

1. internal or intrinsic parameters such as focal length,
optical center, aspect ratio:
what kind of camera?

2. external or extrinsic (pose) parameters:
where is the camera in the world coordinates?

* World coordinates make sense for multiple cameras /
multiple images

How can we do this?

Approach 1: solve for projection matrix

Place a known object in the scene

« identify correspondence between image and scene
» compute mapping from scene to image

u; moo Mol Mo2 M3
vi | 2| mig my11 mio mi3

m>0 MmMo1 Moo o3

X
Y,
Z,

Direct linear calibration

X

(% mog mp1 ™Mmop2 Mmop3 v
vi | 2| mig mi1 mio> mi3 ZL-
1 Mmoo Mo1 Mop Mo3 1”‘

Solve for Projection Matrix IT using least-squares (just
like in homework)

Advantages:
+ All specifics of the camera summarized in one matrix
» Can predict where any world point will map to in the image

Disadvantages:
» Doesn't tell us about particular parameters
» Mixes up internal and external parameters
— pose specific: move the camera and everything breaks

Approach 2: solve for parameters

A camera is described by several parameters
» Translation T of the optical center from the origin of world coords
» Rotation R of the image plane
+ focal length f, principle point (X';, y'.), pixel size (s,, s,)
» blue parameters are called “extrinsics,” red are “intrinsics”

Projection equation v

SX * ok ok sk)Y(’ p X
X=|w|=|+ =+ o[V I-MIX y] (i)

1 —»xl

» The projection matrix models the cumulative effect of all parameters

» Useful to decompose into a series of operations o .
identity matrix

-fs, 0 X100 0 I/
H_|: 0 -, y'EHO 1o O{RM 03“}{ 343 TM}

3
0 0O 10 01 0 O 1

0]r3 1
intrinsics projection rotation translation

» Solve using non-linear optimization

Distortion

Radial distortion of the image
» Caused by imperfect lenses

No distortion Pin cushion

Barrel

» Deviations are most noticeable for rays that pass through the

edge of the lens

Distortion

Orthoscopic

Pin-cushion

10

Radial distortion

Correct for “bending” in wide field of view lenses

7 = /(1 + 517 4 ki)

J = /(1 + k17 + ko)
& /2 4+ ¢
f@//2‘|‘ Ye

8
|

Use this instead of normal projection

Multi-plane calibration

Dimaget (1-2] PR S || DY twnge (1-4) O S | DY tmnpet (1-d) O B [LYt (1-d) O B [LY 1wt (1-a) O

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
* Only requires a plane
» Don’t have to know positions/orientations
* Good code available online!

— Intel’'s OpenCV library: http:/www.intel.com/research/mrl/research/opencv/

— Matlab version by Jean-Yves Bouget:
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

— Zhengyou Zhang'’s web site: http:/research.microsoft.com/~zhang/Calib/

11

Homography revisited

—fs, 0 x.||1 0 00
X= I_I_X H = 0 —fsy y'r 010 0 |:R3 3 03)(1:“:13,(3 T3,vl:l
0 0 10 0 1 O 0., L0, 1
K P R T
x=PRTX X~T1RWP1x

x; = PR T{T, 'R, P, "X, = Mx,
M is 4x4 but if all points X are on a plane, we can drop
the last row and get our homography matrix H:
X; ~ Hx,
Now, if the camera only rotates (no translation):
H= K,R,R, 'K,
Therefore, our homography has only 3,4 or 5 DOF,
depending if focal length is known, same, or different.
+ This makes image registration much better behaved

Image registration

How do we determine alignment between images?

+ Direct (pixel-based) alignment

* One possibility: block matching (correlation), i.e., find minimum

squared error

Eu,v)= 2[11 (x+u, y+v)—1,(x, y)]2

(x,y)

+ Another possiblility: Fourier-domain correlation [Brown’92]

« But have to be more clever when more DOF are needed

12

Image registration

How do we determine alignment between images?
» Feature-based Alignment
+ Match features between images and use as correspondences
» But matching is tricky:
— Features look like each other

— Features don’t look like themselves when transformed

13

