Modeling Light

15-463: Rendering and Image
Processing
Alexei Efros

On Simulating the Visual Experience

Just feed the eyes the right data

- No one will know the difference!

Philosophy:

- Ancient question: "Does the world really exist?"

Science fiction:

- Many, many, many books on the subject
- Latest take: The Matrix

Physics:

- Slowglass might be possible?

Computer Science:

- Virtual Reality

To simulate we need to know:
How and what does a person see?

Today

How do we see the world?

- Geometry of Image Formation

What do we see?

- The Plenoptic Function

How do we recreate visual reality?

- Sampling the Plenoptic Function
- Ray Reuse
- The "Theatre Workshop" metaphor

How do we see the world?

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Camera Obscura

The first camera

- Known to Aristotle
- Depth of the room is the focal length
- Pencil of rays - all rays through a point
- Can we measure distances?

Distant objects are smaller

Camera Obscura

How does the aperture size affect the image?

Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...

Shrinking the aperture

The reason for lenses

Adding a lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

Modeling projection

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
= Why?
- The camera looks down the negative z axis
- we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x, y, z) to COP
- Derived using similar triangles (on board)

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

- We get the projection by throwing out the last coordinate:

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)
$$

Homogeneous coordinates

Is this a linear transformation?

- no-division by z is nonlinear

Trick: add one more coordinate:

$$
\begin{array}{cc}
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{array} \quad(x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Converting from homogeneous coordinates

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=} & {\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}
\end{array}\right] \Rightarrow d \frac{y}{z}\right)
$$

This is known as perspective projection

- The matrix is the projection matrix
- Can also formulate as a 4×4

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z}, \quad-d \frac{y}{z}\right)
$$

Orthographic Projection

Special case of perspective projection

- Distance from the COP to the PP is infinite

- Also called "parallel projection"
- What's the projection matrix?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Spherical Projection

What if PP is spherical with center at COP? In spherical coordinates, projection is trivial:
$(\theta, \phi)=(\theta, \phi)$
Note: doesn't depend on focal length d!

The eye

The human eye is a camera!

- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- photoreceptor cells (rods and cones) in the retina

The Plenoptic Function

Q: What is the set of all things that we can ever see?
A: The Plenoptic Function (Adelson \& Bergen)

Let's start with a stationary person and try to parameterize everything that he can see...

Grayscale snapshot

is intensity of light

- Seen from a single view point
- At a single time
- Averaged over the wavelengths of the visible spectrum (can also do $P(x, y)$, but spherical coordinate are nicer)

Color snapshot

$P(\theta, \phi, \lambda)$
is intensity of light

- Seen from a single view point
- At a single time
- As a function of wavelength

A movie

$\boldsymbol{P}(\theta, \phi, \lambda, t)$
is intensity of light

- Seen from a single view point
- Over time
- As a function of wavelength

Holographic movie

$\boldsymbol{P}\left(\theta, \phi, \lambda, t, V_{X}, V_{Y}, V_{Z}\right)$
is intensity of light

- Seen from ANY viewpoint
- Over time
- As a function of wavelength

The Plenoptic Function

$P\left(\theta, \phi, \lambda, t, V_{X}, V_{Y}, V_{Z}\right)$

- Can reconstruct every possible view, at every moment, from every position, at every wavelength
- Contains every photograph, every movie, everything that anyone has ever seen! it completely captures our visual reality! Not bad for function...

Ray
Let's not worry about time and color:

5D

- 3D position
- 2D direction

Ray Reuse

Infinite line

- Assume light is constant (vacuum)

4D

- 2D direction
- 2D position
- non-dispersive medium

Can still sample all images!

Lumigraph - Organization

Hold s,t constant
Let u,v vary
An image

Slide by Rick Szeliski and Michael Cohen

Lumigraph / Lightfield

Lumigraph - Capture

Idea 1

- Move camera carefully over s, t plane
- Gantry
- see Lightfield paper

Lumigraph - Capture

Idea 2

- Move camera anywhere
- Rebinning
- see Lumigraph paper

Slide by Rick Szeliski and Michael Cohen

Lumigraph - Rendering

Nearest

- closest s
- closest u
- draw it

Blend 16 nearest

- quadrilinear interporation

2D: Image

What is an image?

All rays through a point

- Panorama?

See also: 2003 New Years Eve
http://www.panoramas.dk/fullscreen3/f1.html
All light rays through a point form a ponorama
Totally captured in a 2D array -- $\boldsymbol{P}(\boldsymbol{\theta}, \boldsymbol{\phi})$
Where is the geometry???

Lighting Designer (environment maps)

Show Naimark SF MOMA video
http://www.debevec.org/Naimark/naimark-displacements.mov

Sheet-metal Worker (geometry)

Let surface normals do all the work!

... working together

clever Italians

Want to minimize cost

Each one does what's easiest for him

- Geometry - big things
- Images - detail
- Lighting - illumination effects

Façade demo

Campanile Movie
http://www.debevec.org/Campanile/

Next Time

Start Small: Image Processing
Assignment 1:
Out by Monday (check the web)

