

Today

Blobs

- Need for blobs
- Extracting blobs
- Image Segmentation

Working with binary images

- Mathematical Morphology
- Blob properties

Further Reading:

• Gonzalez and Woods, Ch. 9 & 10

Basic Concepts in Set Theory

A is a set in Z^2 , a=(a₁,a₂) an element of A, a \in A If not, then a \notin A \emptyset : null (empty) set Typical set specification: C={w|w=-d, for d \in D} A subset of B: A \subseteq B Union of A and B: C=A \cup B Intersection of A and B: D=A \cap B Disjoint sets: A \cap B= \emptyset Complement of A: $A^c = \{w \mid w \notin A\}$ Difference of A and B: A-B={w|w \in A, w \notin B}= $A \cap B^c$

